000874412 001__ 874412
000874412 005__ 20210130004653.0
000874412 0247_ $$2Handle$$a2128/24522
000874412 037__ $$aFZJ-2020-01422
000874412 041__ $$aEnglish
000874412 1001_ $$0P:(DE-HGF)0$$aBali, Gunnar S.$$b0$$eCorresponding author
000874412 1112_ $$aNIC Symposium 2020$$cJülich$$d2020-02-27 - 2020-02-28$$wGermany
000874412 245__ $$aFlavour Structure of the Baryon Octet
000874412 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000874412 29510 $$aNIC Symposium 2020
000874412 300__ $$a175 - 184
000874412 3367_ $$2ORCID$$aCONFERENCE_PAPER
000874412 3367_ $$033$$2EndNote$$aConference Paper
000874412 3367_ $$2BibTeX$$aINPROCEEDINGS
000874412 3367_ $$2DRIVER$$aconferenceObject
000874412 3367_ $$2DataCite$$aOutput Types/Conference Paper
000874412 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1583842391_2655
000874412 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000874412 4900_ $$aPublication Series of the John von Neumann Institute for Computing (NIC) NIC Series$$v50
000874412 520__ $$aWe investigate aspects of the structure of different baryons via simulations of quantum chromodynamics in lattice regularisation (Lattice QCD). In particular, we study the mass spectrum, (generalised) isovector charges as well as moments of light cone distribution amplitudes. The charges correspond to moments of parton distribution functions (PDFs). Almost all visible matter in the universe consists of nucleons (i. e. protons and neutrons), which are also the prime probes for new physics, be it in accelerator experiments or dark matter and neutrino detectors. The results will increase the precision of the relation between experimental cross sections and decay rates and the underlying fundamental theory, which describes interactions on the quarks and gluon level rather than interactions with the nucleons (which are composed of quarks and gluons). By extending the study to so-called hyperons that contain strange quarks, in addition to the up and down quarks of the nucleon, at many different quark mass combinations, the validity range of chiral perturbation theory (ChPT) and quark flavour symmetry relations can be checked and low energy constants predicted. The simulations are carried out in N$_f$ = 2 + 1 QCD, neglecting the mass difference between up and down quarks and the electric charges of the quarks. We employ Coordinated Lattice Simulations (CLS) gauge ensembles. These were generated in a Markov chain using the hybrid Monte Carlo (HMC) algorithm with open boundary conditions in time, on several European supercomputers including JUWELS and JUQUEEN. The Wilson fermion discretisation is used, with non-perturbative removal of lattice spacing effects that are proportional to the lattice constant (order $a$ improvement). The main computational task in the analysis that is carried out on the Xeon-Phi Booster module of JURECA of these gauge ensembles with volumes ranging from 64 $\cdot$ 32$^3$ up to 192 $\cdot$ 96$^3$ points, encompassing 1000–2000 configurations each, is the multiple solution of sparse large linear systems with a dimension of up to (2 $\cdot$ 10$^9$)2 complex variables. This is achieved by an adaptive algebraic multigrid algorithm. A novel stochastic method allows us to obtain results for four different baryons and many momentum combinations with little computational overhead, relative to just computing the structure of the nucleon at a few momenta.
000874412 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000874412 7001_ $$0P:(DE-HGF)0$$aCollins, Sara$$b1
000874412 7870_ $$0FZJ-2020-01353$$iIsPartOf
000874412 8564_ $$uhttps://juser.fz-juelich.de/record/874412/files/NIC_2020_Collins.pdf$$yOpenAccess
000874412 8564_ $$uhttps://juser.fz-juelich.de/record/874412/files/NIC_2020_Collins.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874412 909CO $$ooai:juser.fz-juelich.de:874412$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874412 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversität Regensburg$$b0
000874412 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversität Regensburg$$b1
000874412 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000874412 9141_ $$y2020
000874412 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874412 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874412 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x0
000874412 980__ $$acontrib
000874412 980__ $$aVDB
000874412 980__ $$aUNRESTRICTED
000874412 980__ $$acontb
000874412 980__ $$aI:(DE-Juel1)NIC-20090406
000874412 9801_ $$aFullTexts