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Monte-Carlo Simulations of QCD with dynamical up, down, strange and charm quarks are
carried out on lattices with large volumes and fine lattice spacings using a new massive renor-
malisation and improvement scheme that is tailored towards situations with a dynamical charm
quark. The lattice spacings of the generated ensembles are determined and first physical re-
sults, concerning the mass spectrum of mesons built from a charm and anti-charm quark, are
presented.

1 Introduction

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of strong interactions. The building blocks
are quark fields, that come in six different flavours, each with a different mass, and gluon
fields that are the force carriers of the strong interactions. Due to the strength of the in-
teractions and the phenomenon of confinement, the approximation that works very well in
the electroweak sector, perturbation theory, is only of limited use for QCD, especially at
low energies. This is however the energy region where the standard model makes many
easily testable predictions. The whole hadron mass spectrum including exotic states, vari-
ous properties of hadrons, like the magnetic moments of proton and neutron or their charge
radii, decay constants, and a plethora of other quantities can in principle be calculated in
QCD from first principles. But the only method to carry these calculations out without
relying on major uncontrolled approximations is by a numerical evaluation of the QCD
path integral by Monte-Carlo methods.

1.2 Lattice QCD

A formulation of QCD that is particularly well suited for numerical methods, is the lattice-
regularised Euclidean path integral. A four dimensional piece of space-time of size T ×L3

is discretised. A hypercubic lattice with lattice-spacing a is introduced and quark fields
are only defined on the sites of this lattice instead of being continuous functions of the
spacetime position. In this formulation predictions are obtained from high dimensional
integrals of the form

〈O〉 =

∫
DU

1

Z
e−Sg [U ] det[Du] det[Dd] det[Ds] det[Dc] det[Db] det[Dt] O[U ] (1)

The integration is over all gauge field configurations

∫
DU ≡

T/a−1∏

x0=0

L/a−1∏

x1,x2,x3=0

3∏

µ=0

∫
dU(x, µ) (2)
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where U(x, µ) is a SU(3) matrix on the link between site x = (x0, x1, x2, x3) and its
neighbour in the positive µ direction, and dU is the Haar measure of SU(3). This amounts
to a very high dimensional (e. g. around 500× 106 dimensional for ensemble B of Tab. 1),
compact, integral. Sg[U ] is the gauge-action. There are many different possibilities to
discretise the continuum Yang-Mills action, one particular being the tree-level Symanzik
improved action1

Sg[U ] =
1

g2
0

(
5

3

∑

p

tr[1− Up]−
1

12

∑

r

tr[1− Ur]
)

(3)

where g0 is the bare gauge coupling constant, p runs over all oriented elementary squares
and r over all rectangles of size 1 × 2 of the lattice. Up (Ur) are ordered products of the
SU(3) gauge field variables around the squares (rectangles). The contributions of the sea-
quarks are encoded in the fermionic determinants det[Di]. The huge (≈ 190·106×190·106

for ensemble B) matrices Di are discretised Dirac operators, and again there are many
different choices. For clover improved Wilson fermions2 they are given by

Di[U ] = Dw +mi + δDv (4)

Dw =
1

2
{γµ(∇∗µ +∇µ)−∇∗µ∇µ} (5)

δDvψ(x) = csw
i

4
σµν F̂µν(x)ψ(x) (6)

Here γ0, . . . , γ3 are Dirac matrices, σµν = iγµγν , mi is the bare mass parameter for quark
flavour i and ∇µ (∇∗µ) are covariant forward and backward lattice derivative operators
with respect to xµ. F̂µν is a discretised field strength tensor. See e. g. Ref. 3 for an exact
definition of all quantities. Z is a normalisation constant, such that 〈1〉 = 1, and finally
O[U ] is an “observable”. For every quantity that one wants to compute, an appropriate
observable has to be found, e. g. meson masses can be extracted from the t dependence of
correlation functions with

O[U ] =
∑

~x,~y

tr[ΓD−1
i (x0, ~x;x0 + t, ~y)ΓD−1

j (x0 + t, ~y;x0, ~x)] (7)

Here the space-time indices of the Dirac operators are written out explicitly, x = (x0, ~x),
and Γ are matrices like e. g. Γ = γ5 ≡ γ0γ1γ2γ3, that select a particular symmetry channel.
Note, that the inverse operators are not sparse matrices anymore!

Results of lattice QCD depend on the lattice spacing a and ultimately the continuum
limit a → 0 has to be taken (numerically). Due to asymptotic freedom in the continuum
limit the bare coupling approaches g0 → 0. L and T are usually chosen to be large enough,
that one is effectively working in the infinite volume limit.

1.3 Algorithms

The factor p[U ] ≡ e−Sg

Z

∏
i det[Di] is real, positive (for mass-degenerate u and d quarks

and heavy enough remaining quarks) and normalised, which makes it a valid probabil-
ity density function for the distribution of gauge field configurations. This is the per-
fect starting point for Monte-Carlo methods. If a sequence of gauge field configurations
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U (1), . . . , U (N) distributed according to p can be generated, the integral in Eq. 1 can be
estimated by 〈O〉 = 1

N

∑
iO[U (i)] +O(N−1/2) .

The generation of these configurations proceeds according to a variant of the Hybrid
Monte-Carlo (HMC) algorithm.4 Even-odd and Hasenbusch mass preconditioning5 are
applied to the determinants, before the molecular dynamics equations are integrated using
multi-level higher order integrators.6 Linear systems involving the Dirac operators are delt
with using deflated7 and SAP-preconditioned8 Krylov space solvers. All simulations are
carried out using openQCD-1.6.9

2 Dynamical Charm Quarks

According to the Appelquist-Carazzone decoupling theorem,10 heavy quarks have only a
minor influence on low energy physics. In practice this means that replacing detDi by 1
(a.k.a. quenching the quarks) will only introduce O(m−2

i ) errors on quantities with ener-
giesE � mi, as long as the coupling and the remaining quark masses are chosen correctly.
This is almost always applied to the heaviest quarks, the bottom and the top quark. The
simplified setup spares a lot of tuning efforts, and more importantly makes a multi-scale
problem more manageable. The next lighter quark, charm, is a bit of an edge case, and is
treated differently by different collaborations. Its impact on low energy observables is be-
lieved to be small, at around 2 permille11 level. At the same time, a dynamical charm quark
may introduce large lattice artifacts of order (amc)

2 or even O(amc) with unimproved or
partially improved Wilson fermions. Moreover the costs of the simulations are increased
and the tuning of simulation parameters is substantially more difficult. Hence e. g. the CLS
consortium opted for simulations with a three flavour action.12 There are however appli-
cations, where a dynamical charm quark would be desirable, provided that the increased
lattice artifacts can be controlled. One such application is charm physics, where the en-
ergies of the quantities of interest are not necessarily smaller than mc. Although binding
energies seem to be reproduced well by the effective theory,13 it is expected that quanti-
ties that depend on so-called disconnected charm quark diagrams are quite sensitive to the
presence of a dynamical charm quark. Another is the determination of fundamental pa-
rameters of QCD. With a dynamical charm quark one has direct access to the four flavour
Λ-parameter, without relying on perturbation theory.

Unimproved Wilson fermions have leading lattice artifacts of O(a). This can be
brought down to O(a2) by implementing the Symanzik improvement programme.14 The
action is augmented by an improvement term2 that, when its coefficient, csw in Eq. 6, is
tuned correctly, cancels most of the O(a) artifacts. In mass-independent renormalisation
schemes, renormalisation and improvement factors do not depend on the quark masses. To
achieve full O(a) improvement in such schemes often many additional improvement coef-
ficients need to be determined, that multiply terms proportional to quark masses. Examples
are given by the b, b and d, d coefficients in the expression for the renormalised, improved
quark mass15

mi = Zm(g̃2
0 , aµ)

[
mq,i + (rm(g̃2

0)− 1)
tr[Mq]

Nf
+ a

{
bm(g2

0)m2
q,i + bm(g2

0)tr[Mq]mq,i

+ (rm(g2
0)dm(g2

0)− bm(g2
0))

tr[M2
q ]

Nf
+ (rm(g2

0)dm(g2
0)− bm(g2

0))
(tr[Mq])

2

Nf

}]
(8)
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In the past these coefficients were determined approximately in perturbation theory. This
could be justified by the smallness of the quark masses. With dynamical charm quarks a
non-perturbative determination of these coefficients is called for.16 Alternatively – and this
is what we are exploring in this project – one can depart from massless schemes, and define
mass-dependent renormalisation and improvement factors, resulting in a largely simplified
O(a) improvement pattern.

mi = Z̃m(g2
0 , aµ, aM)

[
mi − m̃crit(g

2
0 , atr[Mq])

]
(9)

The clover coefficient csw for a physical value of the charm quark mass and degenerate
light quark masses corresponding to their average in nature was determined in Ref. 17 to a
high accuracy, and here we use this action for the first time in large volume simulations.

3 Scale Setting

The lattice spacing a is not a parameter of the simulation. What can be adjusted,
are the dimensionless bare coupling g0 and the bare quark masses in lattice units
amu, amd, ams, amc, non of which have a physical meaning. The results of a simula-
tion are then (physical) quantities expressed in multiples of the unknown lattice spacing,
e. g. the masses of pions amπ , kaons amK , D-mesons amD and all other hadron masses,
or their decay constants afπ etc. In principle the mass parameters can be tuned such that
a set of ratios of meson masses takes their physical values. One last quantity, e. g. fπ can
then be used to determine the lattice spacing, i. e. to “set the scale”, a = afπ/f

experimental
π .

Simulations at physical masses are extremely expensive and feasible only at rather coarse
lattice spacings, if at all. The scale setting therefore is complicated by chiral extrapola-
tions in the light quark masses. For high precision also electro-magnetic effects need to
be taken into account. Fortunately some quantities are known to a high precision also at
non-physical quark masses, from earlier simulation projects, which can be used to greatly
simplify the scale setting procedure. One such quantity is the gradient flow scale t018 at a
mass point where mu = md = ms and 12m2

πt0 = 1.11.
√

8t?0 = 0.413(5)(2) fm (10)

To set the scale with a new action, one only needs to carry out simulations at this unphysical
mass point (denoted by the ? symbol), and to determine t?0/a

2.

4 Simulations and Results

The goal is to find simulation parameters that correspond to quark masses implicitly given
by mu = md = ms and

φ4 ≡ 8t0

(
m2

K +
m2
π

2

)
= 1.11 (11)

φ5 ≡
√

8t0 (mDs + 2mD) = 11.94 (12)

and lattice spacings a ∈ {0.054, 0.041, 0.032} fm. The QCD formulation is a tree-level
Symanzik improved gauge action paired with non-perturbatively O(a) improved Wilson
fermions, in a massive scheme.17 Once the correct simulation parameters are found, high
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ens. T
a × L3

a3 6/g2
0 amu,d,s amc a[fm] Lm?

π Ntraj (MDUs)
A0 96× 163 3.24 -0.27996 -0.088861 0.054 1.75 1000 (2000)
A1 96× 323 3.24 -0.27996 -0.088861 0.054 3.5 3908 (7816)
A2 128× 483 3.24 -0.27996 -0.088861 0.054 5.3 3868 (7736)
B 144× 483 3.43 -0.32326 -0.17971 0.041 4.4 3030 (6060)
C 192× 643 - - - 0.032 - 0 (0)

Table 1. Summary of finished and planned ensembles.

ens. Nms t0/a
2 amπ,K amD,Ds φ4 φ5

A0 500 8.83(23) 0.310(6) 0.614(17) 10.22(90) 15.48(43)
A1 1954 7.43(4) 0.1137(8) 0.5247(7) 1.159(17) 12.168(40)
A2 1934 7.36(3) 0.1107(3) 0.5228(4) 1.087(6) 12.059(20)
B 1515 11.55(6) 0.0910(4) 0.4183(7) 1.148(12) 12.0627(32)

Table 2. Tuning results for the Ensembles available so far.

statistics ensembles are generated and (among other things) t?0/a
2 is measured. Tab. 1

summarises the finished and planned ensembles.
Ensembles A0, A1 and A2 have the same lattice spacing and serve as a check of fi-

nite volume effects. The result is, that these are negligible for our purposes, as long as
mπL > 4, see Fig. 1.
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Figure 1. Finite volume effects on the pion mass, from Ensembles A0, A1 and A2.

Although we have not gathered the full statistics of ensembleB yet, we already roughly
know the lattice spacing and can judge, how well the novel action copes with lattice arti-
facts. In Fig. 2 a quantity is plotted, that is supposed to vanish in the continuum limit. The
rate at which it does so, is compatible with leading scaling violations of O(a2), which is
very encouraging, given that these are the two coarsest ensembles that we consider.
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Figure 2. The relative difference of two different definitions of the gradient flow scale t0, which should vanish
in the continuum limit at a rate proportional to a2.

5 Future Applications

5.1 Charmonium Spectrum

Although the ensembles generated so far are all at a non-physical mass point, the chiral
extrapolations are expected to be very flat for quantities that do not contain light (u,d,s)
valence quarks. The reason for this is, that the sum of the (renormalised) light quark masses
has already the physical value. Therefore the sum of the differences to the physical masses
is zero (∆u + ∆d + ∆s) = 0. The derivatives of these quantities with respect to the light
quark masses are equal to each other at the mass-symmetric point, so in the expression for
the correction between symmetrical and physical mass point, the leading term vanishes,
e. g. for the mass of the ηc meson

mphys
ηc = mηc + (∆u + ∆d + ∆s)

dmηc

dmu
+O(∆2) (13)

With the fine lattice spacings, our ensembles are very well suited for a study of charmonia
and in fact, already at the coarsest lattice, the charmonia masses that we obtain, are very
close to their values in nature. One should however note, that we are neglecting discon-
nected contributions to these masses at the moment. Tab. 3 summarises the findings for
ensemble A2.

ηc J/ψ χc0 χc1 hc
am 0.8180(2) 0.8489(2) 0.9398(86) 0.9833(72) 0.9902(81)

m [GeV] 2.9890(7) 3.1019(7) 3.434(31) 3.593(26) 3.618(30)
PDG [GeV] 2.9834(5) 3.096900(6) 3.4148(3) 3.51066(7) 3.52538(11)

Table 3. Masses of charmonium states on ensemble A2 together with their PDG19 values.
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5.2 Strong Coupling

In determinations of the strong coupling constant as done by the ALPHA collaboration,
an intermediate result is the Λ-parameter in multiples of a simulated box size L. The L/a
values of the finite volume simulations that enter this determination are of course known,
but to obtain the physical value of Λ, the lattice spacings need to be known, too. For the
planned case of four flavours they are provided by this project.

5.3 Chiral Trajectories

If, at some point, Nf = 2 + 1 + 1 simulations of QCD with improved Wilson quarks
are desired, this work provides a formidable starting point. The quantities φ4 and φ5 are
chosen such, that mc and mu +md +ms have nearly their physical values. The physical
mass point can be approached along chiral trajectories where mu = md is decreased
and ms is increased, while the trace of the quark mass matrix is kept constant. This is a
strategy which is particularly well suited for Wilson fermions, and which has been already
successfully employed in Ref. 12, 20. No expensive tuning of simulation parameters is
required anymore.

6 Conclusions

First Monte-Carlo simulations of QCD with a novel action that is tailored towards simula-
tions including a dynamical charm quark have been carried out on the mass-symmetrical
points of relatively fine lattices. The lattice artifacts seem to be relatively mild and more
importantly in agreement with O(a2) scaling, already at the coarsest ensemble. The scale
has been set and the ground state masses of a few charmonia have been computed. Already
at the coarsest lattice a reasonable agreement with their values in nature is found. All of
this encourages us to carry on with the last ensemble with finest lattice spacing.
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