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We calculate several diagonal and non-diagonal fluctuations of conserved charges in a system of

2+1+1 quark flavours with physical masses, on a lattice with size 48
3
× 12. Higher order fluc-

tuations at µB = 0 are obtained as derivatives of the lower order ones, simulated at imaginary

chemical potential. From these correlations and fluctuations we construct ratios of net-baryon

number cumulants as functions of temperature and chemical potential, which satisfy the exper-

imental conditions of strangeness neutrality and proton/baryon ratio. Our results qualitatively

explain the behaviour of the measured cumulant ratios by the STAR collaboration.

1 Introduction

One of the most challenging goals in the study of Quantum Chromodynamics (QCD) is

a precise mapping of the phase diagram of strongly interacting matter. First principle,

lattice QCD simulations predict that the transition from hadrons to deconfined quarks and

gluons is a smooth crossover, taking place in the temperature range T ≃ 145− 165 MeV.

Lattice simulations cannot presently be performed at finite density due to the sign problem,

thus leading to the fact that the QCD phase diagram is still vastly unexplored when the

asymmetry between matter and antimatter becomes large.

With the advent of the second Beam Energy Scan (BES-II) at the Relativistic Heavy

Ion Collider (RHIC), scheduled for 2019-2020, there is a renewed interest in the heavy ion

community towards the phases of QCD at moderate-to-large densities. A rich theoretical

effort is being developed in support of the experimental program; several observables are

being calculated, in order to constrain the existence and location of the QCD critical point

and to observe it experimentally.

Fluctuations of conserved charges (electric charge Q, baryon number B and

strangeness S) are among the most relevant observables for the finite-density program for

several reasons. One possible way to extend lattice results to finite density is to perform

Taylor expansions of the thermodynamic observables around chemical potential µB = 0.

Recent results can be found in Ref. 1. Fluctuations of conserved charges are directly re-

lated to the Taylor expansion coefficients of such observables, thus, they are needed to

extend first principle approaches to the regions of the phase diagram relevant to RHIC. An

other popular method to extend observables to finite density is the analytical continuation

from imaginary chemical potentials. The agreement between the analytical continuation

and Taylor expansion was shown for the transition temperature by Bonati et al. in Ref. 2.
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Fluctuations can also be measured directly, and a comparison between theoretical and

experimental results allows to extract the chemical freeze-out temperature Tf and chemi-

cal potential µBf as functions of the collision energy. Such fluctuations have been recently

calculated and extrapolated using the Taylor method in Ref. 3. Finally, higher order fluc-

tuations of conserved charges are proportional to powers of the correlation length and are

expected to diverge at the critical point, thus providing an important signature for its ex-

perimental detection.4

In this project, we calculate several diagonal and non-diagonal fluctuations of con-

served charges up to sixth-order and give estimates for higher orders, in the temperature

range 135 MeV ≤ T ≤ 220 MeV, for a system of 2+1+1 dynamical quarks with physical

masses and lattice size 483 × 12. We simulate the lower-order fluctuations at imaginary

chemical potential and extract the higher order fluctuations as derivatives of the lower or-

der ones at µB = 0. This method has been successfully used in the past and proved to lead

to a more precise determination of the higher order fluctuations, compared to their direct

calculation.5, 6 The direct method (see e. g. Ref. 7) requires the evaluation of several terms

and is affected by a signal-to-noise ratio which is decreasing as a power law of the spatial

volume V , with an exponent that grows with the order of the susceptibility.

We also construct combinations of these diagonal and non-diagonal fluctuations in or-

der to study the ratio of the cumulants of the net-baryon number distribution as functions

of temperature and chemical potential by means of their Taylor expansion in powers of

µB/T . We discuss their qualitative comparison with the experimental results from the

STAR collaboration, as well as the validity of the truncation of the Taylor series.

2 Fluctuations and Imaginary Chemical Potentials

The chemical potentials are implemented on a flavour-by-flavour basis, their relation to the

phenomenological baryon (B), electric charge (Q) and strangeness (S) chemical potentials

are given by

µu =
1

3
µB +

2

3
µQ, µd =

1

3
µB −

1

3
µQ, µs =

1

3
µB −

1

3
µQ − µS (1)

The observables we are looking at are the derivatives of the free energy with respect to

the chemical potentials. Since the free energy is proportional to the pressure, we can write:

χB,Q,S
i,j,k =

∂i+j+k(p/T 4)

(∂µ̂B)i(∂µ̂Q)j(∂µ̂S)k
(2)

with µ̂i =
µi

T . These are the generalised fluctuations we calculated around µ = 0 in our

previous work.8

The fermion determinant detM(µ) is complex for real chemical potentials, prohibiting

the use of traditional simulation algorithms. For imaginary µ, however, the determinant

stays real. The chemical potential is introduced through weighted temporal links in the

staggered formalism: U0(µ) = eµU0 and U†
0 (µ) = e−µU †

0 . Thus, an imaginary µ trans-

lates into a phase factor for the antiperiodic boundary condition in the Dirac operator. Due

to the Z(3) symmetry of the gauge sector, there is a non-trivial periodicity in the imagi-

nary quark chemical potential µq → µq+i(2π/3)T , which translates to the baryochemical

potential as µB → µB + i2πT , the Roberge-Weiss symmetry. This is independent of the

charge conjugation symmetry µB ↔ −µB .
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At µB = iπT there is a first order phase transition at all temperatures above the

Roberge-Weiss critical end point TRW .9 When µB crosses iπT in the imaginary direction,

the imaginary baryon density is discontinuous. At low temperature the Hadron Resonance

Gas model predicts 〈B〉 ∼ sinh(µB/T ), thus for imaginary values we expect a sine func-

tion below Tc: Im〈B〉 ∼ sin(ImµB/T ). At temperatures slightly above Tc, we observe

that further Fourier components appear in addition to sin(ImµB/T ) with alternating coef-

ficients, these are consistent with a repulsive interaction between baryons.10 At very high

temperatures, on the other hand, 〈B〉 is a polynomial of µB since the diagrams contribut-

ing to its ∼ µ5
B and higher order components are suppressed by asymptotic freedom.11

The Stefan-Boltzmann limit is non-vanishing only for two Taylor coefficients of Im 〈B〉,
giving Im〈B〉|µB/T=iπ−ǫ = 8π/27. At finite temperatures above TRW this expectation

value is smaller but positive, which implies a first order transition at µB = iπT .

We have only the range µ/T ∈ [0, iπ) to explore the µ-dependence of the observables.

Recent simulations in this range include the determination of the transition line, where the

slope was determined on the negative side of the T −µ2
B phase diagram. Using analyticity

arguments, this coefficient gives the curvature of the transition line on the real T − µB

phase diagram.12–14 Apart from the transition temperature, we used imaginary chemical

potentials also to extrapolate the equation of state to real µB ,5 which serves as an alter-

native approach to the Taylor extrapolation.15 In a recent study D’Elia et al. have used

the low order fluctuations at imaginary chemical potentials to calculate generalised quark

number susceptibilities.6

3 Analysis Details

3.1 Lattice Setup

In this work we calculate high order fluctuations by studying the imaginary chemical po-

tential dependence of various generalised quark number susceptibilities.

We use a tree-level Symanzik improved gauge action, with four times stout smeared

(ρ = 0.125) staggered fermions. We simulate 2+ 1+ 1 dynamical quarks, where the light

flavours are tuned in a way to reproduce the physical pion and kaon masses and we set
mc

ms

= 11.85.16 For the zero-temperature runs that we used for the determination of the

bare masses and the coupling, the volumes satisfy Lmπ > 4. The scale is determined via

fπ . More details on the scale setting and lattice setup can be found in Ref. 8.

Our lattice ensembles are generated at eighteen temperatures in the temperature

range 135. . . 220 MeV. We simulate at eight different values of imaginary µB given as:

µ
(j)
B = iT jπ

8 for j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. In this work the analysis is done purely on a

483 × 12 lattice, we leave the continuum extrapolation for future work.

In terms of quark chemical potentials we generate ensembles with

µu = µd = µs = µB/3. In each simulation point we calculate all derivatives in

Eq. 2 up to fourth order. Thanks to our scan in Im µ̂B , we can calculate additional µB

derivatives. Ref. 6 uses various “trajectories” in the µB − µQ − µS space, allowing the

numerical determination of higher e. g. µQ and µS derivatives. We find a relatively good

signal for the µQ and µS derivatives by directly evaluating Eq. 2 within one simulation.

We recently summarised the details of the direct calculation in Ref. 8.
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3.2 Correlated Fit with Priors

We start with the analysis for χB
2 (T ), χ

B
4 (T ) and χB

6 (T ). Our goal is to calculate these

quantities at zero chemical potential, using the imaginary chemical potential data up to

χ4
B(T, µ̂B). In this work we extract these derivatives at a fixed temperature. Results for dif-

ferent temperatures are obtained completely independently, an interpolation in temperature

is not necessary at any point. Thus, the error bars in our results plot will be independent.

The errors between the quantities χB
2 (T ), χ

B
4 (T ) and χB

6 (T ) will be highly correlated,

though, since these are extracted through the same set of ensembles at the given tempera-

ture. This correlation will be taken into account when combined quantities are calculated,

or when an extrapolation to real chemical potential is undertaken.

Thus we consider the ensembles at a fixed temperature T . For each value of imaginary

µB 6= 0 we determine χB
1 , χB

2 , χB
3 and χB

4 from simulation, while for µB = 0 only χB
2

and χB
4 can be used, since χB

1 and χB
3 are odd functions of µB and therefore equal to zero.

We make the following ansatz for the pressure:

χB
0 (µ̂B) = c0 + c2µ̂

2
B + c4µ̂

4
B + c6µ̂

6
B + c8µ̂

8
B + c10µ̂

10
B (3)

where the Taylor expansion coefficients cn are related to the baryon number fluctuations

χB
n by: n!cn = χB

n . Our data do not allow for an independent determination of c8 and

c10. Nevertheless, in order to have some control over these terms we make assumptions on

the higher order terms. A detailed discussion on our assumptions can be found in Ref. 17

In the fit function we keep the terms up to χB
10 = 10!c10. Without this term the statistical

errors on χB
8 were clearly smaller, but the fit would be less controlled. As the highest order

in the function, the resulting χB
10 probably contains severe contamination from even higher

order terms. For this reason, and since we fit χB
10 with large statistical errors we do not

give results on that quantity. For simplicity, we use the same prior distribution for χB
10/χ

B
4

as for χB
8 /χ

B
4 .

We can then rewrite our ansatz as

χB
0 (µ̂B) = c0 + c2µ̂

2
B + c4µ̂

4
B + c6µ̂

6
B +

4!

8!
c4ǫ1µ̂

8
B +

4!

10!
c4ǫ2µ̂

10
B (4)

where ǫ1 and ǫ2 are drawn randomly from a normal distribution with mean -1.25 and

variance 2.75. We use the same distribution for all temperatures. In effect, our c8 and c10
coefficients are stochastic variables. The used distribution for ǫ1,2 actually implements a

prior for χB
8 and χB

10.

For this ansatz we calculate the following derivatives, which are the actually simulated

lattice observables:

χB
1 (µ̂B) = 2c2µ̂B + 4c4µ̂

3
B + 6c6µ̂

5
B +

4!

7!
c4ǫ1µ̂

7
B +

4!

9!
c4ǫ2µ̂

9
B (5)

χB
2 (µ̂B) = 2c2 + 12c4µ̂

2
B + 30c6µ̂

4
B +

4!

6!
c4ǫ1µ̂

6
B +

4!

8!
c4ǫ2µ̂

8
B (6)

χB
3 (µ̂B) = 24c4µ̂B + 120c6µ̂

3
B +

4!

5!
c4ǫ1µ̂

5
B +

4!

7!
c4ǫ2µ̂

7
B (7)

χB
4 (µ̂B) = 24c4 + 360c6µ̂

2
B + c4ǫ1µ̂

4
B +

4!

6!
c4ǫ2µ̂

6
B (8)

We perform a correlated fit for the four measured observables, thus obtaining the values

of c2, c4 and c6 for each temperature, and the corresponding χB
2 , χB

4 and χB
6 . We repeat
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that are constrained only by the posterior distribution are plotted with green symbols.

These histograms are built independently for each number (j and k) of µS and µQ

derivatives. When calculating the systematics for the cumulant ratios (Sec. 4) we need to

calculate different combinations of diagonal and non-diagonal fluctuations from the avail-

able analyses. Though these fits (corresponding to the same temperature) are carried out

separately we keep track of the statistical correlation, by maintaining the jackknife en-

sembles throughout the analysis. The correct propagation of systematic errors is a more

elaborate procedure. When χBSQ
ijk coefficients are combined with different j, k pairs, dif-

ferent histograms have to be combined. If we had only two variables to combine, each

of the 2000 first fit variants should be combined with each of the 2000 second fit variants

and use the product of the respective probability weights. Instead, we combine the fit re-

sults by drawing ’good’ fits by importance sampling from each histogram independently.

In this way, O(100) random combinations of χBSQ
ijk results already give convergence for

each discussed quantity and its error bar. For the results in this paper we used 1000 such

random combinations. This procedure assumes that between different j, k pairs the prior

distribution is uncorrelated.

4 Phenomenology at Finite Chemical Potential

For a comparison with heavy ion collision experiments, the cumulants of the net-baryon

distribution are very useful observables. The first four cumulants are the mean MB , the

variance σ2
B , the skewness SB and the kurtosis κB . By forming appropriate ratios, we

can cancel out explicit volume factors. However, the measured distributions themselves

may still depend on the volume, which one should take into account when comparing to

experiments.

Heavy ion collisions involving lead or gold atoms at µB > 0 correspond to the fol-

lowing situation 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉. For each T and µB pair, we have to

first calculate µQ and µS that satisfy this condition. The resulting µQ(µB) and µS(µB)
functions, too, can be Taylor expanded,20, 21 introducing

qj =
1

j!

dj µ̂Q

(dµ̂B)j

∣

∣

∣

∣

µB=0

, sj =
1

j!

dj µ̂S

(dµ̂B)j

∣

∣

∣

∣

µB=0

(9)

We investigate three different ratios of cumulants:

MB

σ2
B

=
χB
1 (T, µ̂B)

χB
2 (T, µ̂B)

= µ̂Br
B,1
12 + µ̂3

Br
B,3
12 + . . . (10)

SBσ
3
B

MB
=

χB
3 (T, µ̂B)

χB
1 (T, µ̂B)

= rB,0
31 + µ̂2

Br
B,2
31 + . . . (11)

κBσ
2
B =

χB
4 (T, µ̂B)

χB
2 (T, µ̂B)

= rB,0
42 + µ̂2

Br
B,2
42 + µ̂4

Br
B,4
42 + . . . (12)
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takes into account the experimental constraints 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉. These

ratios qualitatively explain the behaviour observed in the experimental measurements by

the STAR collaboration as functions of the collision energy.

We focused on observables (baryon distribution, ratios of cumulants) that are less

sensitive to lattice artefacts. An obvious extension of our work will be the use of finer

lattices and a continuum extrapolation. The other extension is to use a two- or even

three-dimensional mapping of the space of the imaginary chemical potentials using non-

vanishing µS and µQ. That would not only improve the µS- and µQ-derivatives, but would

allow us to study the melting of states with various strangeness and electric charge quan-

tum numbers. Our first study in this direction using strangeness chemical potentials was

published in Ref. 25.

Acknowledgements

This project was funded by the DFG grant SFB/TR55. The authors gratefully acknowledge

the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this

project by providing computing time on the GCS Supercomputer JUQUEEN26 at Jülich
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