000874417 001__ 874417
000874417 005__ 20210130004653.0
000874417 0247_ $$2Handle$$a2128/24528
000874417 037__ $$aFZJ-2020-01427
000874417 041__ $$aEnglish
000874417 1001_ $$0P:(DE-HGF)0$$aSaenger, Erik H.$$b0$$eCorresponding author
000874417 1112_ $$aNIC Symposium 2020$$cJülich$$d2020-02-27 - 2020-02-28$$wGermany
000874417 245__ $$aNumerical Simulations of Wave Propagation: Time Reverse Imaging and Defect Mapping in Pipes
000874417 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000874417 29510 $$aNIC Symposium 2020
000874417 300__ $$a231 - 241
000874417 3367_ $$2ORCID$$aCONFERENCE_PAPER
000874417 3367_ $$033$$2EndNote$$aConference Paper
000874417 3367_ $$2BibTeX$$aINPROCEEDINGS
000874417 3367_ $$2DRIVER$$aconferenceObject
000874417 3367_ $$2DataCite$$aOutput Types/Conference Paper
000874417 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1583849354_3150
000874417 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000874417 4900_ $$aPublication Series of the John von Neumann Institute for Computing (NIC) NIC Series$$v50
000874417 520__ $$aTime reverse imaging (TRI) is evolving into a standard technique for locating and characterising seismic events. In recent years, TRI has been employed for a wide range of applications from the lab scale, to the field scale and up to the global scale. No identification of events or their onset times is necessary when locating events with TRI; therefore, it is especially suited for locating quasi-simultaneous events and events with a low signal-to-noise ratio. However, in contrast to more regularly applied localisation methods, the prerequisites for applying TRI are not sufficiently known. To investigate the significance of station distributions, complex velocity models and signal-to-noise ratios with respect to location accuracy, numerous simulations were performed using a finite difference code to propagate elastic waves through three-dimensional models. Moreover, we present a reverse-time imaging technique by cross-correlating the forward wavefield with the reverse wavefield for the detection, localisation, and sizing of defects in pipelines. The presented technique allows to capture the wavefield reflectivity at the places of ultrasonic wave scattering and reflections. Thus, the method is suitable for detecting pipe defects of either point-like or finite-size types using data from a pulse-echo setup. By using synthetic data generated by 3D spectral element pipe models, we show that the 3D wavefield cross-correlation imaging is capable in the case of cylindrical guided ultrasonic waves. With a ring setup of transducers, we analyse the imaging results obtained from the synthetic single-transducer and all-transducer firings. The presented pipe flaw imaging method is straightforward to carry out using a suitable wave equation solver.
000874417 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000874417 7001_ $$0P:(DE-HGF)0$$aWerner, Claudia$$b1
000874417 7001_ $$0P:(DE-HGF)0$$aNguyen, Luan T.$$b2
000874417 7001_ $$0P:(DE-HGF)0$$aKocur, Georg K.$$b3
000874417 7001_ $$0P:(DE-HGF)0$$aAhrens, Benedikt$$b4
000874417 7870_ $$0FZJ-2020-01353$$iIsPartOf
000874417 8564_ $$uhttps://juser.fz-juelich.de/record/874417/files/NIC_2020_Ahrens.pdf$$yOpenAccess
000874417 8564_ $$uhttps://juser.fz-juelich.de/record/874417/files/NIC_2020_Ahrens.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874417 909CO $$ooai:juser.fz-juelich.de:874417$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874417 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aHS Bochum$$b0
000874417 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aRuhr-University Bochum$$b0
000874417 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aHS Bochum$$b1
000874417 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aRuhr-University Bochum$$b1
000874417 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aHS Bochum$$b2
000874417 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000874417 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aHS Bochum$$b4
000874417 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000874417 9141_ $$y2020
000874417 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874417 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874417 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x0
000874417 980__ $$acontrib
000874417 980__ $$aVDB
000874417 980__ $$aUNRESTRICTED
000874417 980__ $$acontb
000874417 980__ $$aI:(DE-Juel1)NIC-20090406
000874417 9801_ $$aFullTexts