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The richness of emergent phenomena that stem from the fundamental laws of quantum mechan-
ics is astonishing. Topology, inherent to the integer Hall effect and Chern insulators, allows us
to understand why a dirty two-dimensional electron gas can provide the most precise determi-
nation of fundamental constants. Electron correlations lead to the notion of fractionalisation
and associated emergent lattice gauge theories widely studied in high energy physics. Finally,
quantum engineering leads to amazing possibilities for designing novel materials and nano-
structures that may very well define the building blocks of information technologies beyond
silicon. Given this fascinating richness of phenomena, the natural question to ask for a nu-
merically oriented researcher is: can one develop a flexible and efficient program package that
allows one to define and simulate, at minimal programming cost, a wide set of model Hamilto-
nians? We have recently written an open source library, coined Algorithms for Lattice Fermions
(ALF) that allows us to study a large variety of designer and realistic models. In this article,
we will summarise aspects of the ALF-library, demonstrate its range of application and then
concentrate on the case study of fractionalisation in a Falicov-Kimball model.

1 Introduction

Consider a single spin-1/2 degree of freedom defined in a two dimensional Hilbert space.
The quantum mechanical state of N spin-1/2 degrees of freedom on a graph, that for in-
stance provides a minimal model for undoped high temperature cuprate superconductors,
corresponds to a vector in a 2"V dimensional Hilbert space. The temporal evolution of this
state requires diagonalisation of a 2V x 2V Hamiltonian matrix H. Since for a macro-
scopic cuprate sample, N = 1023 and the task is generically out of reach. How is it that we
can nevertheless solve so called non-frustrated spin models in thermodynamic equilibrium
on arbitrarily large lattices? The answer lies in the formulation of the partition function in
terms of a Feynman path integral:

7 = Tre H/ksT /d¢(m, 7)e=5@) (1)

Here, T is the temperature, k5 the Boltzmann constant, « a site of the graph, 7 the imag-
inary time running from 0 to 1/kgT and finally S the action that is a functional of ¢. For
fermion systems, the action generically takes the form S = Sy(¢) — log det M (¢) where
S is the action of the bosonic field and the determinant arises from the coupling of the
scalar field to the fermionic degrees of freedom. The above equation is the basis for auxil-
iary field QMC! algorithms used in the lattice gauge and solid state communities. The key
point is that for a given configuration of fields, one can calculate the action in polynomial
time. In our implementation, we compute explicitly the determinant, and the computation
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cost to evaluate the action for a single field configuration scales as N3 /(kpT). The func-
tional integral can be computed stochastically. This can can be achieved in polynomial
time only in special cases.

e The sign problem. To use Monte Carlo sampling we need a positive definite cost
function. Hence the action has to be real. The path integral is by no means unique and
one of the key questions is to ask if it is possible to find a formulation with real action
that one can compute for a given field in polynomial time. This requirement defines
a class of so called negative sign free problems. In this domain, tremendous progress
has been achieved in terms of symmetry properties of the action that lead to negative
sign free formulations.”> Furthermore, and in the spirit of universality, the sign prob-
lem can be avoided by cleverly defining models that capture the relevant — negative
sign free — physics and omits the irrelevant interactions that can generate negative sign
problems. Such a designer model approach to study universal properties at criticality
or to understand properties of specific phases is very much en vogue in the solid state
community. A recent biased selection includes the following Refs. 6-10. If one is
not able to find a negative sign free formulation, then one can use reweighing tech-
niques to nevertheless formulate a Monte Carlo sampling. For a given precision the
computational time will scale as e2N/#5T where A is a formulation dependent pos-
itive constant. There is a body of research that aims to find formulations of quantum
many body problems that ease the negative sign problem by minimising the value of
A. Here one can mention efforts based on the representation of the path integral in
terms of a Lefschetz thimble decomposition.'!" 12 On each thimble the fermion sign
is constant, but the problem is caused by the number of thimbles. The number of
thimbles is however formulation dependent and optimal representations have recently
been proposed.' 14

e Sampling. The sign problem is only one of many issues. The action can be real,
but the distribution can have fat tails that inhibit the very notion of Monte Carlo sam-
pling."> Even for well defined distributions, critical slowing down remains an issue.
For example there are many electron-phonon problems that are free of the negative
sign problem but that suffer from very long autocorrelation times that inhibit precise
calculations on large lattices. In the present version of the ALF library,'® we are us-
ing discrete fields and global updating methods such as Langevin dynamics or Hybrid
Monte Carlo are not applicable. We are planing to implement these updating schemes
in a future release. We note that machine learning as a tool to propose global moves
is presently en vogue.'”

In the above, we have highlighted the challenges. There is nevertheless a number of
model Hamiltonians that we can simulate efficiently. In what follows, we will briefly
summarise the workings of the ALF-Library'® and then concentrate on a case study of
fractionalisation in a Falicov-Kimball model.

2 The ALF

The ALF-library is programmed following Fortran-2003 standard and comes with an
MPI-implementation. We are only dependent on BLAS and LAPACK libraries and
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all the heavy numerical calculations are done through calls to these libraries. Hence,
if they are well optimised on the supercomputers we use, our code will perform
well. For the program development, we have established a git software repository at
http://alf.physik.uni-wuerzburg.de and a small steering committee meets
regularly so as to discuss future developments and merge requests of feature branches into
the master branch. On top of this, at each commit we run a series of tests, so as to at best
track down bugs. For each project, we fork the master branch and if required implement
the novel Hamiltonian. With this organisation, each run can be associated to a commit hash
so that one can keep track of the version of the program that has produced the results. This
organisation allows us to discuss and develop codes collaboratively, and has proven to be
very efficient.

Being a Monte Carlo method, the ALF dumps the bins for a given observable on the
disc. Although we have a feature branch aiming at using HDFS5 file formats, the open
source branch still prints out the data in scientific format. The ALF-library, comes with
an independent error analysis suite that reads in the bins and produces final results. The
path integral is formulated in imaginary time, so that to make contact with spectroscopic
experiments, we have to carry out an analytical continuation. The present ALF-library
comes with an implementation of the stochastic Maximum Entropy method'® to carry out
the continuation. This allows us to produce data that can be compared directly with exper-
iment.

It is beyond the scope of this article to provide a detailed account of the ALF project,
and the interested reader is referred to the documentation'® and to our git instance at
http://alf.physik.uni-wuerzburg.de. Here we will summarise one of the
key points, namely the definition of the Hamiltonian on which the program package is
based. Of course, the aim is to define a general Hamiltonian which can accommodate a
large class of models. Our approach is to express the model as a sum of one-body terms,
a sum of two-body terms each written as a perfect square of a one body term, as well as
a one-body term coupled to an Ising field with dynamics to be specified by the user. The
form of the interaction in terms of sums of perfect squares allows us to use generic forms
of discrete approximations to the Hubbard Stratonovitch (HS) transformation.'®?° Sym-
metry considerations are imperative to enhance the speed of the code. We therefore include
a colour index reflecting an underlying SU(N) colour symmetry as well as a flavour in-
dex reflecting the fact that after the HS transformation, the fermionic determinant is block
diagonal in this index.

The class of solvable models includes Hamiltonians # that have the following general
form:

7:1:7:1T+7:lv+7:11+7:l01,where 2)
Mt Ncor Na Naim

k=1o=1s=1 =,y

2 My )

} =Y u (v““)) @)
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M
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The indices and symbols have the following meaning:

The number of fermion flavours is set by Ng. After the HS transformation, the action
will be block diagonal in the flavour index.

The number of fermion colours is set by N.o,. The Hamiltonian is invariant under
SU(N¢o) rotations.

Ngin is the total number of spacial vertices: Ngim = Nunit celt Vorbital, Where Nypit cell
is the number of unit cells of the underlying Bravais lattice and N, pita 1S the number
of (spacial) orbitals per unit cell.

The indices = and y label lattice sites where x,y = 1, -+ , Ngim.

Therefore, the matrices T%%), V' (¥s) and I(*s) are of dimension Ngjm X Naim-

The number of interaction terms is labelled by My and M;. Mr > 1 would allow
for a checkerboard decomposition.

ézgs is a second quantised operator that creates an electron in a Wannier state centred
around lattice site y, with colour o, and flavour index s. The operators satisfy the
anti-commutation relations:

{éjm,éy,o,s,} = 6y.0/85.505.0r, and {cygcw} —0 (6)

The Ising part of the general Hamiltonian (Eq. 2) is ?:[07 1 4+ H; and has the following
properties:

Z, is an Ising spin operator which corresponds to the Pauli matrix .. It couples to a
general one-body term.

The dynamics of the Ising spins is given by 7:[07 1. This term is not specified here; it
has to be specified by the user and becomes relevant when the Monte Carlo update
probability is computed in the code.

Note that the matrices T*%), V' (k) and T(**) explicitly depend on the flavour index s
but not on the colour index o. The colour index ¢ only appears in the second quantised
operators such that the Hamiltonian is manifestly SU(N¢,) symmetric. We also require
the matrices T*), V' (¥5) and T(*%) to be Hermitian.

We are continuously developing the library. Although the open source public fork

only contains single spin flip updates, our git repository for development, includes parallel
tempering schemes, global updates, as well as continuous fields. Continuous fields were
important so as to implement the long range Coulomb repulsion required to provide a real-
istic modelling of graphene.?! Future developments include the implementation of hybrid
molecular dynamics, Langevin dynamics as well as imaginary time dependent Hamiltoni-

ans.
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3 A Case Study: Fractionalisation in a Falicov-Kimball Model

Here we will summarise work that was carried out in collaboration in M. Hohenadler and
that was published in Refs. 9, 22. The Falicov-Kimball model is a simplification of the
SU(2) Hubbard model in which one of the two fermion flavours acquires an infinite mass.
One can generalise this notion to the case of the SU(3) Hubbard model, and the Hamilto-
nian reads:

A=t 3 (e, +He) ~UD (i = 3) (- D Q)
(ig),o i

We use the same notation as above, o runs over the two spin components, and QAl = =+1
is an Ising variable. Importantly, Qiisa locally conserved quantity [f] °Q Ql} = 0 and

can be understood as a modulation of the sign of the Hubbard term depending upon the
site occupation of the infinite mass third fermion. As it stands, it is highly non-trivial to
see that this model has phases where the electron degree of freedom fractionalises into two
entities:

AT N fT oz R (8)

ZU’L’ 70'1

Here, the so called orthogonal fermion, fw, carries an electron charge as well as a Zs
charge and the Ising degree of freedom, 57, only a Z; charge. The composite object, the
fermion, possesses the usual quantum numbers. Since the Hilbert space per site consists
of a fermion degree of freedom, cw, and the Ising field, Ql, the above substitution does
not expand the Hilbert space so that no constraint is required. In the orthogonal fermion
formulation, we can write the Ising variable as:

O; = 8 (—1) X0 flofic = 57(—1)Z0 et )
where fjg fia = cjgcw follows from Eq. 8. Here, 87 and 57 are represented by Pauli
matrices acting on the Ising spin at site <. Using the identity

(—1)Ze fiefir = T] (20 — 1) (10)
we can rewrite Eq. 7 as
T fs A% 8% U T
=t Y (fwaMﬁHc)_ZZsi (11)
(ig),o i

Finally, one can explicitly check that [ﬁ fs QAZ} = 0 so that H/* and H°? are dual.

The above Hamiltonian is not amenable to simulations with the ALF library and a further
transformation has to be carried out. Consider the bond variable

’\Z AZ

i Z” (12)

Because a spin flip on a single site % under the action of 57 affects all four bond variables,
the dual representation involves a so-called star operator,

SRR TS CHND o ¢ (13)

1,1ty “ -y
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Figure 1. Phase diagram of the dual Hamiltonians (Eqs. 7, 11, and 14). A phase transition of the Ising variables
Qi at Ty separates the low-temperature Hubbard regime from the high-temperature phase. Here, Ty was de-
termined from data for L = 8, see Ref. 22. The two metallic regimes at T' > T, appear to be separated by a
crossover, as indicated by the colour gradient. Adapted from Ref. 9.

where ¢ & « is a compact notation for the site at r; &+ é, and X , A corresponds to the x-
and y-Pauli matrices acting on the bond variables. These steps lead to the Hamiltonian

~ p A N U N N N ~
HfZ = —¢ (Z> (fjafja + HC) Zij — Z Z Zi,i+mZi,iszi,i+yZi,ify (14)
ij),0 %

This Hamiltonian (Eq. 14) with bond Ising variables takes the form familiar of Ising lattice
gauge theories coupled to matter. Here, there are important differences that lead to the
unique properties of the phase diagram. Firstly, in Ising lattice gauge theories the Gauss
law Ql = =1 is imposed. Secondly, since ZAMW — §f§j visons (a 7-fluxes of the Z5
field) are absent. In the above formulation, the model can be simulated with the ALF-
library without encountering the negative sign problem.

The phase diagram of the model is plotted in Fig. 1 and contains three phases that
one can understand very transparently when considering the slave spin formulation. Since
Q; commutes with the Hamiltonian, we expect this Ising variable to show a finite tem-
perature transition akin to the two dimensional Ising universality class. Below the tran-
sition temperature Qi orders ferromagnetically, such that at T = 0 we can replace Ql
by unity in Eq. 7 and recover the physics of the generic half-filled Hubbard model. At
U = 0, the Ising field ZAij has no quantum fluctuations, and with the vison-less constraint,

ZALH% ZAZ‘M”JF%JF%Zi+aw+ayyi+ay Zita,: = 1, one can show with a gauge transfor-
mation that any Ising bond configuration will be equivalent to the choice Z; ; = 1, or
equivalently to the choice 57 = 1. The model then reduces to a simple Fermi liquid. At

finite values of U above Ising transition temperature, one cannot solve the model exactly,
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but one can carry out educated guesses based on a mean-field analysis that breaks the local
Z, symmetry inherent to the model.”® At weak coupling, we can set (37) = s > 0 and
(87) = 0 such that we recover the Fermi liquid state. On the other hand, at strong coupling,
temporal fluctuations of the Ising field will be quick such that we expect the Ising correla-
tions to decay exponentially in time and space, but the short ranged ones to remain finite.
In a mean field picture we would hence set (37) = 0 but (5787, , ) > 0. Fractionalisation
of the electron into an orthogonal fermion and a Z, field means that it can propagate co-
herently — in this mean-field vertex free picture — only if both constituents have a coherent
propagation. Hence, in the disordered state of the Ising variable, the physical electron is
localised and the single particle spectral shows no Fermi surface. Consider on the other
hand a charge degree of freedom. The propagation of such an electron-hole pair does not
depend on the coherent motion of the Z, field. Hence, charge fluctuations are gapless.

Our numerical calculations published in Refs. 9, 22 confirm the above mean field pic-
ture of the orthogonal metallic state in the Falicov-Kimball model. Seen from the perspec-
tive of particle-hole quantities the OM is a metallic (not superconducting) state. Seen from
the perspective of the single particle, it is an insulator. Showing that this state of matter
can emerge in a Falikov-Kimball model is one of the highlights of the work we recently
carried out using the computational resources at the NIC.

4 Conclusions

The ALF implementation of the auxiliary field quantum Monte Carlo method provides
us with a very flexible tool to simulate a variety of correlated electron systems. In the
future, we will further develop this library and place emphasis on alternative sampling
methods such as Hybrid Monte Carlo and Langevin dynamics as well as on time dependent
Hamiltonians. The ALF-library and the associated git repository provide a documented and
collaborative program development. It also allows to easily reproduce data since the output
of each run includes the commit hash. As it stands, we have no efficient collaborative
means to analyse the data of runs, and this is taken care of at the user level. Clearly each
user stores data on tapes, but the access becomes very slow. Each run produces GBs of
data in the forms of Monte Carlo bins such that a project cumulates to several TBs. Disc
space is in principle not an issue but the challenge lies in defining the meta data as well
as efficient tools that will allow us to navigate and search data bases and reanalyse, if
required, the Monte Carlo time series. Such efforts will be pursued in the future. The pool
of applications is very big. It ranges from toy models that capture interesting concepts
such as fractionalisation, as described above, to realistic modelling of many body systems.
In fact within the ALF-library we are able to consider long range Coulomb interactions,?!
a necessity for an accurate description of graphene. Furthermore, we are able to simulate
very general spin systems embedded in a metallic environment.?* This allows us to provide
numerical support for a variety of magnetic nano-systems grown on metallic surfaces.?> 2
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