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Phase separation in multicomponent polymer melts is a ubiquitous process in polymer engineer-

ing and consequently has also attracted abiding interest from simulation and theory. Whereas

the equilibrium thermodynamics of macrophase separation and microphase separation in ho-

mopolymer blends and copolymers can be rather quantitatively described by Self-Consistent

Field Theory (SCFT) or extensions that capture fluctuations, the kinetics of structure evolu-

tion poses challenges for a theoretical description. Examining simple, prototypical examples,

we highlight the role of internal modes and indicate how Dynamic Self-Consistent Field The-

ory (D-SCFT) can be generalised to include the consequences of the subdiffusive single-chain

dynamics for the collective kinetics on times comparable to the Rouse-relaxation time.

1 Introduction

Structure formation – macrophase separation or self-assembly into spatially modulated

phases – in multicomponent polymer melts is ubiquitously employed in technical appli-

cations such as plastics toys made of rubber-toughened/high-impact polystyrene or soles

of shoes and tire treads using poly(styrene-butadiene-styrene) (SBS) triblock copolymers.

Blending two different polymers, one fabricates a composite with improved materials char-

acteristics. By virtue of chain connectivity, long macromolecules have a small entropy of

mixing, and a minuscule repulsion between the monomeric repeating units of different

polymer species gives rise to domain formation. In these spatial regions, monomeric re-

peating units of one species are enriched and they are separated by interfaces from the

domains of the other monomer species. The phase behaviour in equilibrium, the properties

of interfaces between domains, and the self-assembly of block copolymers, where the two

monomer species are covalently linked together into a macromolecule and macroscopic

phase separation is avoided, are rather well understood. Since the long macromolecules in

a melt strongly interdigitate, one molecule interacts with many neighbours and the equilib-

rium behaviour can be accurately described by SCFT.

In practical applications, however, thermodynamic equilibrium often is not achieved.

For instance, in rubber-toughened polystyrene the hard, brittle polystyrene and the soft,

deformable rubber do not macroscopically phase separate but rather form an assembly of

interfaces with a characteristic domain size of micrometers. It is exactly this nonequilib-

rium morphology that gives rise to the improved impact resistance. Likewise, copolymers

almost never form an ideal crystalline arrangement of domains. Instead, without exter-

nal guiding fields, the morphology is riddled with defects and the perfecting of order is

protracted.

Therefore it is important to understand the kinetics of structure formation in order to

predict and tailor the structure evolution. The accurate knowledge of the equilibrium ther-
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modynamics and the free energy of a phase-separated morphology is an excellent starting

point. In the following, we consider an incompressible, two-component polymer melt,

where φA(r, t) and φB(r, t) = 1 − φA(r, t) denote the normalised number densities of

monomer species, A and B. SCFT provides for each morphology, φA, an accurate value

of the free energy, F [φA], and of the exchange chemical potential, µ, assuming that the

molecular conformations are in equilibrium with the instantaneous value of the density,

φA(r, t). In a nonequilibrium situation, the chemical potential varies in space and its gra-

dient gives rise to a current. Since the density is locally conserved, we obtain a model-B

time evolution1–3

∂φq,A(t)

∂t
= −q

2Λq

µq[φA]

kBT
(1)

where Λq denotes the Onsager coefficient that relates the gradient of the chemical potential

to a current of the density. The wavevector-dependence of Λq signals the spatial nonlo-

cality of the relation between chemical potential and current that stems from the chain

connectivity. This kinetic equation forms the basis of D-SCFT.4–12

Consider an ideal mixture of two structurally and dynamically symmetric homopoly-

mers with no repulsion between the two monomer species, χFHN = 0. Here, χFH and

N denote the Flory-Huggins parameter and the chain length, respectively. Initially, at time

t = 0, there is a small-amplitude, sinusoidal density modulation with wavevector q. Within

linear-response approximation, the chemical potential is linearly related to the amplitude

of the density modulation,
µq

kBT
= N

Sq

φq,A, where Sq denotes the static, collective structure

factor. Inserting this expression into Eq. 1, we simply obtain

φq,A(t) = φq,A(0) exp

(

−q
2Λq

N

Sq

t

)

(2)

i. e. the density modulation exponentially decays with a wavevector-dependent relaxation

time. By the same token, Eq. 1 also predicts that the collective, dynamic structure factor,

Sq(t) ∼ 〈φq,A(t)φq,A(0)〉 decays exponentially in time at fixed q.

On the other hand, since the mixture is ideal, the collective dynamic structure factor,

Sq(t), is proportional to the dynamic form factor, S
(0)
q (t), of a single chain. Indeed, S

(0)
q (t)

decays exponentially in time for (qRe)
2 → 0 (with Re being the root mean-squared end-

to-end distance). In the opposite limit, (qRe)
2 ≫ 1 and times, t, smaller than the Rouse

time, τR, however, the subdiffusive behaviour of the monomer mean-squared displacement,

g1(t), alters the decay. Qualitatively, one obtains2

ln
φq,A(t)

φq,A(0)
= ln

S
(0)
q (t)

S
(0)
q

∼ q
2g1(t) ∼ (qRe)

2

√

t

τR
for t ≪ τR (3)

In Fig. 1 we present our simulation data using a dense melt,
√
N̄ = 51 200, of finely

discretised Gaussian chains, N = 256, within our soft, coarse-grained model.14, 15 The

simulations were performed with our parallel, GPU-accelerated program, SOMA.16 Due to

the softness of the potentials, macromolecular contours can cross each other in the course

of their motion, and the single-chain dynamics is quantitatively described by the Rouse

model.17 Unlike Eq. 1, the simulations include thermal fluctuations but their effect is rather

small because of the large invariant degree of polymerisation, N̄ . Also the simulations do
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Figure 1. Relaxation of a density modulation with amplitude φq,A(t) at qRe = 8π in a symmetric homopolymer

blend at χFHN = 0. The decay of the amplitude in the simulation, (black circles), is compared with the dynamic,

single-chain form factor, S
(0)
q (t) (red line – Rouse prediction, green line – simulation), and its limiting behaviours

for long and short times (dashed and dashed-dotted blue lines, respectively). The inset illustrates the decay of the

amplitude on longer time scales. Adapted from Ref. 13

not invoke the Random-Phase Approximation (RPA) approximation of a linear relation

between density modulation and chemical potential.

The decay of the amplitude agrees quantitatively with the decay of the dynamic, single-

chain form factor, and the semilogarithmic representation of the data highlights the nonex-

ponential decay in time.

Thus, D-SCFT fails to account for the qualitative features of the collective kinetics of

structure formation on short time scales. These scales, however, are important for a variety

of processes and computational techniques:

• After a quench of a multicomponent melt from the homogeneous state deep into a

(micro)phase-separated phase, initially, density fluctuations are strongly amplified,

and the morphology obtained after this spinodal phase-separation dictates the sub-

sequent ordering kinetics. The importance of the early-time dynamics holds, a for-

tiori, in the case that the structure formation is directed by external guiding fields,

e. g. surface-directed spinodal decomposition or Directed Self Assembly (DSA).

• Process-Directed Self Assembly (PDSA) of copolymers tailors changes of thermo-

dynamic control parameters, e. g. pressure or temperature, to reproducibly fabricate

well-defined unstable states. The thermodynamic process is constructed such that this

so-constructed unstable state relaxes into a new, metastable state with desired proper-

ties, e. g. a bicontinuous network morphology.18, 19 This relaxation typically requires

281



changes of density on the scale of the unit cell of the spatially modulated phase. Since

the periodicity is on the order Re, the concomitant time scale is on the order of the

Rouse time, τR.

• Advancements in parallel computing enable the investigation of ever larger systems,

however, relevant problems of larger systems often also entail longer time scales.

Thus, computational techniques to extend the time scale of particle-based simula-

tions have attracted abiding interest. For instance, the Heterogeneous Multiscale

Method (HMM)20–22 aims at predicting the time evolution by parameterising a dy-

namic continuum model on-the-fly, using e. g. a description similar to D-SCFT. In

order to project the short-time kinetics into the future, the dynamic continuum model

must be able to accurately describe both, the short-time and the long-time collective

kinetics.

In the following, we outline a generalisation of Eq. 1 that accounts for the subdiffusive,

single-chain dynamics by an Onsager coefficient that not only depends on the wavevector

but, additionally, on the frequency, ω. This is equivalent to introducing memory effects into

Eq. 1, which are qualitatively expected when coarse-graining a microscopic particle-based

model into a continuum description that only retains the slow, locally conserved density

fields.

2 Generalised Model-B Dynamics

The strong bonded forces do not only give rise to a wavevector-dependence of Λq in Eq. 1

but, additionally, result in a subdiffusive single-chain dynamics according to the Rouse

model.17 In order to account for the single-chain dynamics in the collective kinetics, Se-

menov23 proposed the following generalisation of Eq. 1

∂φq,A(t)

∂t
= −q

2

∫ t

−∞

dτ Λq(t− τ)
µq[φq,A(τ)]

kBT
(4)

with a time-dependent Onsager coefficient, Λq(t). Recently, using the Dynamic Random-

Phase Approximation (D-RPA),2, 23–25 we have derived an explicit expression for the

Fourier-Laplace transform, Λ̃q(ω) of this generalised Onsager coefficient,13

iω

q2N Λ̃q(ω)
=

χ̃q,AA + 2χ̃q,AB + χ̃q,BB

χ̃q,AAχ̃q,BB − (χ̃q,AB)
2 − 1

Sq

(5)

in terms of the dynamic susceptibilities

χ̃q,αβ(ω) ≡ −
∫

∞

0

dt
∂S

(0)
q,αβ(t)

∂t
e−iωt = S

(0)
q,αβ(0)− iωS̃

(0)
q,αβ(ω) (6)

with S
(0)
q,αβ(t) being the concentration-weighted, dynamic, single-chain form factors of

monomer species, α and β. Sq is the static, collective structure factor at χFHN = 0.

Notably, this Onsager coefficient does not depend on the strength of the pairwise in-

teraction, χFHN . Thus, Eq. 4 conserves the separation between the thermodynamic force,

∇µ, and the kinetic coefficient that relates this thermodynamic force to a current.
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To illustrate the consequences of the time-dependence of the Onsager coefficient, we

consider an ideal, symmetric homopolymer blend with χFHN = 0. Eq. 5 simplifies to

Λ̃q(ω) = φ̄A(1− φ̄A)
gq,1
q2

[

gq,1
g̃q,1(ω)

− iω

]

=
Sq

Nq2τR

[

gq,1τR
g̃q,1(ω)

− iωτR

]

(7)

where gq,f and g̃q,f (ω) denote the Debye function that characterises the static, single-

chain form factor of the fraction, f , of a Gaussian chain and the Laplace transform of the

dynamic, single-chain form factor, respectively. Sq = φ̄A(1− φ̄A)Ngq,1 is the collective

structure factor of a symmetric blend at χFHN = 0.

Inserting this frequency-dependent Onsager coefficient in the Laplace transform of

Eq. 4,

iωφ̃q,A(ω)− φq,A(0) = −q
2Λ̃q

µ̃q

kBT
(8)

where φq,A(0) denotes the starting morphology at t = 0, we obtain

φq,A(0) =
gq,1

g̃q,1(ω)
φ̃q,A or φq,A(t) = φq,A(0)

gq,1(t)

gq,1
= φq,A(0)

S
(0)
q (t)

S
(0)
q

(9)

in accord with Eq. 3 and the simulation data in Fig. 1.

In the case that the generalised Onsager coefficient, Λ̃q(ω), does not depend on ω, we

recover Eq. 1. To this end, the following sequence of approximations is often employed:

1. We define ϕq,αβ(t) ≡ S
(0)
q,αβ(t)/S

(0)
q,αβ(0) in order to separate the equilibrium ther-

modynamic properties, characterised by the static, single-chain form factor, S
(0)
q,αβ(0),

from the dynamics. ϕq,αβ(0) = 1 and ϕq,αβ(t) → 0 for t → ∞.

2. Ignoring the details of the temporal relaxation, we can crudely approximate

ϕq,αβ(t) ≈ e−t/τq,αβ and χ̃q,αβ ≈
S
(0)
q,αβ

1 + iωτq,αβ
(10)

by an exponential decay with a wavevector-dependent timescale, τq,αβ . Such an ap-

proximation is appropriate for symmetric homopolymer blends on large length scales,

but it fails for copolymers (as shown below), and it is inappropriate for short length

scales, c. f. Fig. 1.

3. Assuming that the relaxation times of the different dynamic, single-chain form fac-

tors were identical, τq,αβ ≈ τq, which is e. g. appropriate for symmetric homopoly-

mer blends or the scale-free Porod limit, (qRe)
2 ≫ 1 and t ≪ τR, in symmetric

copolymers, we obtain a frequency-independent Onsager coefficient

Λ̃q(ω) ≈
Sq

Nq2τq
(11)

where Sq is the collective structure factor of the ideal mixture, χFHN = 0. This gives

rise to an Onsager coefficient, Λq(t) ≈ Sq

Nq2τq
δ(t), that is local in time.
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4. Assuming a diffusive relaxation, τq ≈ 3π2

(qRe)2
τR = 1

q2D with D =
R2

e

3π2τR
within

the Rouse model being the single-chain self-diffusion coefficient, one arrives at the

Onsager coefficient of D-SCFT,

ΛD−SCFT
q

≈ Sq

N
D (12)

Specifically, for an ideal mixture – homopolymer blend or diblock copolymer melt –

with χFHN = 0, small-amplitude density modulations give rise to
µq

kBT
= N

Sq

φq,A. Thus

Eqs. 1 and 12 yield the simple, general D-SCFT prediction

φq,A(t) = φq,A(0) exp(−q
2Dt) for χFHN = 0 (13)

i. e. density modulations decay via the diffusion of the macromolecules’ centre of mass.

This prediction agrees with the decay of the dynamic, single-chain form factor on large

scales but fails to describe the simulation data for (qRe)
2 ≫ 1, as demonstrated in Fig. 1.

Using extensive computer simulations on JUWELS through the NIC, we can validate

each of these approximations, illustrate their consequences, and quantify to what extent the

generalised model-B dynamics, Eq. 4, improves the description of structure evolution.

3 Validation: Decay of a Large-Scale Density Modulation in a

Symmetric Copolymer Melt

For a symmetric copolymer melt at χFHN = 0, the Onsager coefficient of D-SCFT takes

the simple form ΛD−SCFT
q

=
(

gq,1/2 − 1
4gq,1

)

D, and D-SCFT predicts that density mod-

ulations, φq,A(t), exponentially decay in time with the relaxation time τq = 1
q2D , i. e. the

larger the scale of the density modulation the slower is its temporal decay.

In Fig. 2 we present the simulation data for the decay of a density modulation in a

melt of symmetric diblock copolymers with χFHN = 0. Two wavevectors, qRe = 2π/3
and 2π/6, are considered. The data are compared to the predictions of D-SCFT and two

marked discrepancies are observed: (i) The decay of the density modulation in the particle-

based simulation is much faster than predicted by D-SCFT, and (ii) the relaxation time in

the simulation is largely independent from the wavevector.

We again expect that the density modulation decays like the dynamic, collective struc-

ture factor, Sq(t), that can be expressed in terms of dynamic, single-chain form factors by

D-RPA. For χFHN = 0 we obtain

φq,A(t)

φq,A(0)
=

Sq(t)

Sq

D-RPA≈ gq,1/2(t)− 1
4gq,1(t)

gq,1/2 − 1
4gq,1

(14)

To make progress, we note that, on large length scales, (qRe)
2 ≪ 1, the dynamic form

factor, gq,f (t), of a fraction, f , of a Rouse chain takes the form

gq,f (t) ≈ gq,fe
−q

2Dt−(qRe)
2hf (t) (15)

where the function hf (t) characterises the deviation from the diffusive relaxation due to in-

ternal modes for t ≪ τR. hf (t) monotonically increases from hf (0) = 0 to a plateau value,
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Figure 2. Relaxation of large-wavelength density fluctuation with qRe = 2π/6 and 2π/3 in a disordered sym-

metric copolymer melt, χFH = 0. The simulation data (circles, squares) are compared to the prediction of

D-RPA (red lines), D-SCFT (blue lines), and the approximation of the generalised model B (cyan line) according

to Eq. 19 for (qRe)2 → 0 and ωτR → 0. Adapted from Ref. 13.

hf (∞), for t ≫ τR. Note that this function identically vanishes, when we consider an en-

tire Rouse chain, i. e. h1(t) ≡ 0, and h1/2(t) tends to its plateau value, h1/2(∞) = 1/36,

on the time scale τR. Using Eq. 15 in Eq. 14, we obtain13

φq,A(t)

φq,A(0)
≈

[

1− h1/2(t)

h1/2(∞)

]

e−q
2Dt +O

(

(qRe)
2
)

(16)

Thus, the decay of the large-scale density modulation arises from the first factor, which

approaches zero on the time scale, τR, that is independent from the wavevector, q – in

agreement with the simulation data in Fig. 2.

In the case of symmetric copolymer melts, Eq. 5, adopts the simple form

Λ̃q(ω) =

(

gq,1/2 −
1

4
gq,1

)

1

q2τR

[

(

gq,1/2 − 1
4gq,1

)

τR

g̃q,1/2(ω)− 1
4 g̃q,1(ω)

− iωτR

]

(17)

On large length scales, gq,1/2 − 1
4gq,1 = (qRe)

2

144 +O
(

(qRe)
4
)

and, in the same limit, we

use the Rouse model to compute

g̃q,1/2(ω)−
1

4
g̃q,1(ω) ≈

2(qRe)
2

3π4

∑

p odd

1

p4(q2D + p2

τR
+ iω)

(18)
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and obtain the frequency-dependent Onsager coefficient

Λ̃q(ω) ≈
π6D

4608

[

1
∑

p odd
1

p4(q2DτR+p2+iωτR)

− iωτR

]

(19)

In marked contrast to ΛD−SCFT
q

, this generalised Onsager coefficient remains finite for

(qR)2 → 0, indicating that the relaxation stems from internal modes.24, 25 Specifi-

cally, for (qRe)
2 → 0 and ωτR → 0, we find Λ̃q(ω) → 5D/24, corresponding to a

time-independent Onsager coefficient, Λq → 5D/24, that qualitatively differs from the

D-SCFT prediction. This approximate Onsager coefficient yields a single-exponential de-

cay, φq,A(t) = φq,A(0) exp(−10t/[π2τR]) that is in excellent agreement with the simula-

tion data, see Fig. 2.

4 Concluding Remarks

Using computer simulations of a soft, coarse-grained model14, 15 in conjunction with the

parallel, GPU-accelerated program SOMA,16 we have investigated the short-time dynam-

ics of multicomponent polymer melts.13 Even for the most basic kinetic process – the

decay of a density modulation in an ideally miscible system, χFHN = 0 – we have found

significant deviations from D-SCFT.4–12 In the case of a miscible homopolymer blend, we

observed that the amplitude of a short-scale density modulation does not exponentially de-

cay in time and is much faster than predicted by D-SCFT. We trace this failure of D-SCFT

back to the subdiffusive mean-squared monomer displacement for times smaller than τR.

Likewise, for the temporal decay of a large-scale density modulation in symmetric diblock

copolymers, we observe that the relaxation time scale is independent from the wavevector

in the limit (qRe)
2 → 0, whereas D-SCFT predicts τq = 1/(q2D).

We have demonstrated that these deviations can be accounted for by a generalised

model B with a wavevector- and frequency-dependent Onsager coefficient.23 Using

D-RPA, we have obtained an explicit expression for the Onsager coefficient in terms of

the dynamic, single-chain form factors.13 Thereby a direct connection between the non-

trivial single-chain dynamics and the generalised Onsager coefficient is established.

Combining this generalised Onsager coefficient with the accurate chemical potential

of SCFT we expect that our approach can also be extended to the nonlinear regime, where

D-RPA breaks down but SCFT still provides an accurate estimate for the chemical poten-

tial.

Our present validation of the generalised model B has been limited to all but the sim-

plest, prototypical cases. For practical applications, multicomponent systems with a repul-

sion between different monomer species, χFHN > 0, are important as well as systems with

structural and dynamic asymmetries. Moreover, our studies have been restricted to unen-

tangled polymers because our soft, coarse-grained particle-based model does not enforce

noncrossability of molecular contours and analytic predictions for the dynamic, single-

chain form factors are available within the Rouse model.17 Additionally, it is interesting to

investigate more complex chain architectures, such as e. g. multiblock copolymers, star or

branched polymers, and multicomponent polymer networks. In these examples the regime

of subdiffusive dynamics is significantly more extended in time.

Given that the phase separation and self-assembly of complex multicomponent

molecules have attracted abiding interest and that experimentally observed structures do
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not always correspond to equilibrium phases but, instead, are dictated by the kinetics of

structure formation, we expect that the outlined techniques will find ample applications to

explore the kinetics of structure formation in these fascinating materials.
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