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This paper discusses predictions with integrated terrestrial system models, which model water

and energy cycles from the deep subsurface to the upper atmosphere. Such predictions can be

improved by data assimilation, making use of supercomputing. Two examples on very differ-

ent scales (hillslope and continental) illustrate the strengths and remaining uncertainties of the

approach.

1 Introduction

Traditionally, in hydrology, soil science and ecology compartment-specific simulation

models are employed. For example, groundwater models were developed able to simu-

late groundwater flow in (heterogeneous) aquifers, and soil hydrological models able to

simulate water flow in the unsaturated zone including soil evaporation and plant transpi-

ration. In the last two decades integrated hydrological modelling and integrated terrestrial

systems modelling have gained importance. In these integrated models multiple compart-

ments of the terrestrial system are simulated jointly, including their two-way feedbacks.

The development of integrated models is driven by the fact that the different compartments

of the terrestrial system show strong non-linear interactions. In addition, increase in com-

pute power made integrated model simulation with many unknowns feasible, first on large

computing clusters, and later also on PC’s. Examples for integrated hydrological models,

which simulate water flow in soil, aquifer and streams in a coupled fashion are ParFlow1

and HydroGeoSphere.2

Land surface models simulate the exchange of water and energy – the most recent

model generation(s) also carbon and nitrogen – between the land and the atmosphere. Land

surface models incorporated over time increasingly sophisticated representations of soil

and vegetation to better simulate these exchange processes. Land surface models were

therefore in an early stage already integrated models. Nevertheless, land surface models

required a more mechanistic based representation of subsurface flow and heat transport,

which gave rise to the development of integrated terrestrial system models, which couple

land surface models and integrated hydrological models, like for example CLM-ParFlow.3

More recently, such models were also coupled to atmospheric circulation models, as is the

case of the Terrestrial System Modelling Platform (TSMP) that we use in this work.4

Although models like TSMP provide a more mechanistic and complete representation

of the water and energy cycles in terrestrial systems than classical compartment-specific

models, simulations are affected by large uncertainties related to uncertain initial and
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boundary conditions and input parameters. Data assimilation approaches allow to esti-

mate and reduce simulation uncertainties. Data assimilation can constrain initial condi-

tions and parameters by correcting model simulations with measurements, which is based

on the optimal weighting of simulated values on the one hand and measured values on the

other hand. Ensemble based data assimilation, which characterises model uncertainty with

a larger number of model runs, is used in this work. Examples of ensemble-based data

assimilation algorithms are the Ensemble Kalman Filter5 and the Particle Filter.6

This paper discusses first the Terrestrial Systems Modelling Platform, and the data

assimilation framework coupled to it. Afterwards, two application examples are presented.

2 The Terrestrial Systems Modelling Platform TSMP

The Terrestrial System Modelling Platform (TSMP)4 is a modular Earth system model

which combines already pre-existing parallel compartment models for the atmosphere

(COSMO7), the land surface (CLM version 3.58) and the subsurface (ParFlow1, 9, 10).

COSMO is a convection-permitting atmospheric model which is used as the operational

forecast model of the German weather service. CLM is a land surface model that simu-

lates the transfer and partitioning of energy, momentum, water and carbon fluxes between

the atmosphere, vegetation and the subsurface. ParFlow calculates variably-saturated sub-

surface flow and surface water routing (using the kinematic wave approximation) in an

integrated approach.1

Figure 1. Coupling of the TSMP component models ParFlow (subsurface), CLM (land surface) and COSMO

(atmosphere) by OASIS-MCT. The exchanged fluxes and state variables are: ψ (subsurface pressure), Sw (sub-

surface saturation), qinf (net infiltration flux), SH (sensible heat flux), LH (latent heat flux), LW ↑ (outgoing

long wave radiation), τ (momentum flux), α (albedo), P (air pressure), T (air temperature), U (wind velocity),

SW ↓ (incoming short wave radiation), LW ↓ (incoming long wave radiation), QV (specific humidity) and R

(precipitation).
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The coupling library OASIS-MCT11, 12 is used to connect the three component models

of TSMP by exchanging information on fluxes and state variables at the conceptual bound-

aries of the respective compartment models (see Fig. 1) meaning that each compartment

model acts as a lower or upper boundary condition for the adjacent compartment model.

The data exchange between models via OASIS-MCT is managed by one global commu-

nicator (MPI_COMM_WORLD) that is shared between the involved compartment models.

Information on exchanged variables and corresponding interpolation and scaling options

as well as the required communication patterns are defined in the initialisation phase of

the compartment models via OASIS-MCT library calls. The models are then dynamically

coupled at runtime through information exchange at predefined time intervals. Key fea-

tures of TSMP are its integral view on terrestrial processes, its improved physical process

description (as compared to single compartment models), its modularity (different model

combinations can be chosen) and a good scalability on HPC platforms.12

3 The Data Assimilation Framework TSMP-PDAF

Data assimilation with TSMP is enabled by coupling TSMP to the Parallel Data Assim-

ilation Framework (PDAF).13 PDAF14 is a generic data assimilation library that provides

a variety of parallel implementations of ensemble filters that are commonly used for data

assimilation. In addition, PDAF provides functionality for data exchange between ensem-

ble members and the parallel data assimilation algorithms. For the coupling of TSMP with

PDAF, a set of functions needed to be defined, that provide PDAF with information and

data for the assimilation. This includes, for example, functions to extract the relevant state

variables of the TSMP models and functions for providing information on the observation

data.

In the initialisation phase of TSMP-PDAF (before TSMP models are initialised), PDAF

defines three MPI communicators for facilitating data exchange for the assimilation and the

ensemble propagation (Fig. 2). The “model communicator” is defined for each model re-

alisation and is used for the model forward integration. The “filter communicator” is used

for the parallel filter algorithm and is only active for the processors of the first model re-

alisation. The “coupling communicator” is used to collect/distribute information on model

states across different model realisations to/from the filter communicator. Note that each

rank in the model and coupling communicators usually only holds a part of the global

model state vector. For using PDAF with the coupled TSMP model, modifications of the

OASIS-MCT library were necessary to allow the ensemble integration. Specifically, for

the data exchange between different compartment models of TSMP with OASIS-MCT, the

model communicators are used instead of MPI_COMM_WORLD (see Sec. 2).

The PDAF filter algorithms are called during the time integration of the TSMP models

at predefined assimilation intervals when measurements become available. In a first step,

the relevant model states of the ensemble members are collected to the filter communica-

tor by the coupling communicator. Then the filter algorithm is executed within the filter

communicator using the available observation data. The updated model states are then dis-

tributed to the ensemble members via the coupling communicator and the TSMP models

are integrated to the next assimilation step.

Similarly to TSMP, the data assimilation framework TSMP-PDAF is modular and thus

allows to perform data assimilation with different model combinations as well as stand-
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Figure 3. Scaling behaviour (left) and timing information (right) for TSMP-PDAF for a weak scaling test on

JUQUEEN. Black lines show results for an idealised test case (identical ensemble members) and grey lines

show results for a heterogeneous ensemble. The number of ensemble members is increased from 8 to 256.

Each ensemble member used 32 processors for CLM and 96 processors for ParFlow. Different lines refer to

experiments with different model output.

available. The research question was, whether for this hillslope research site the com-

bination of physically based modelling with the TSMP-model and the dense observation

network, allow to make an accurate characterisation of hydrological states and fluxes in-

cluding discharge. In other works, it is often found that predicting discharge at the hillslope

scale is particularly challenging.

This question was addressed with TSMP-PDAF and for the year 2011, where the En-

semble Kalman Filter was used for assimilating the data from the soil moisture sensor

network. An ensemble of 128 (or 256) realisations with different 3D-heterogeneous fields

of Mualem-van Genuchten parameters was generated. Also atmospheric forcings were

considered uncertain and perturbed for each of the 128 (or 256) realisations. Different

assimilation scenarios were run, including state updating alone, and joint state and param-

eter updating. Simulations were also carried out with a synthetic test case mimicking the

Rollesbroich site, to get more insight in the role of model structural errors.

The combination of joint updating of model states and hydraulic conductivity was more

efficient for soil water content (SWC) characterisation than state updating alone for the

real-world case. On average, the root mean square error (RMSE), which measures the dif-

ference between measured and simulated SWC at the sensor locations, was reduced by 14%

if states and parameters were updated jointly, but discharge estimation was not improved

significantly. See also Fig. 4. Synthetic simulations showed much better results with an

overall RMSE reduction by 55% at independent verification locations in case of daily SWC

data assimilation including parameter estimation. Individual synthetic data assimilation

scenarios with parameter estimation showed an increase of the Nash-Sutcliffe-Efficiency

for discharge from -0.04 for the open loop run to 0.61. This shows that data assimila-

tion in combination with high-resolution physically-based models can potentially strongly

improve soil moisture and discharge estimation at the hillslope scale. Additional simu-

lation experiments were performed to understand the difference between the real-world
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Figure 4. RMSE of SWC at individual locations for the open loop runs (left column) and changes in RMSE

(increase implies improvement and decrease implies impoverishment) for three data assimilation scenarios (state

updating alone (ST), daily joint state and parameter updating (PAR1) and joint state and parameter updating every

five days (PAR5d) (three columns on the right)) of the real-world case for 2011.

case and the synthetic case. It was found that erroneous prior values of the geostatistical

parameters are for example already able to explain a considerable part of the difference

in performance between the real-world and synthetic case. On the other hand, if only the

saturated hydraulic conductivity was unknown (and other soil hydraulic parameters were

known), the performance hardly improved compared to the case that all soil hydraulic pa-

rameters were unknown. In summary, the large performance difference between synthetic

and real-world experiments indicates the limits of such an approach associated with model

structural errors like errors in the prior geostatistical parameters.

4.2 Continental-Scale High-Resolution Land Surface Data Assimilation System

Soil moisture is a key state variable which controls the exchange of water, energy and car-

bon fluxes between the land surface and atmosphere.15 As a result, it plays an important

role in many regional–scale applications, including meteorology, hydrology, flood fore-

casting, drought monitoring, agriculture and climate change impact studies.16 Because

of its high spatiotemporal variability, it is difficult to monitor soil moisture at large spa-

tial scales. The knowledge of soil moisture at large scale, with reasonable temporal and

spatial resolution, is therefore needed to provide locally representative information of soil

moisture for regional hydrologic and agriculture applications. However, soil moisture is a

difficult variable to obtain because there are no high-resolution soil moisture observations

available at the continental scale, and observations from measurements or remote sens-

ing products are sparse and temporally and spatially discontinuous. While land surface
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models can provide high resolution large scale high resolution soil moisture estimates with

complete spatial and temporal coverage, the soil moisture fields from models often suffer

substantial errors owing to errors either in model forcing (such as precipitation, tempera-

ture and radiation) or inadequate model physics. We used the land surface data assimilation

system CLM-PDAF to utilise the coarse resolution satellite soil moisture data to update the

soil moisture estimates from the land surface model. A key capability of CLM-PDAF is the

support for data assimilation that combines land surface processes with satellite and in-situ

observations for the estimation of optimal land surface states. The data assimilation struc-

ture in CLM-PDAF allows to directly ingest remotely sensed high resolution observations

of land surface conditions to produce accurate, spatially and temporally consistent fields

of land surface states, with reduced associated error. The CLM-PDAF uses an Ensemble

Kalman Filter (EnKF) algorithm to generate assimilated or reanalysis products. To effec-

tively simulate the background-error covariances, a large enough ensemble size needs to

be maintained in the data assimilation process, which linearly increases the computational

resource requirements. Hence, we implemented the CLM-PDAF over Europe to provide

downscaled estimates of the soil moisture with complete spatiotemporal coverage by com-

bining historical satellite soil moisture (SM) observations with a high resolution land sur-

face model (LSM) using data assimilation techniques. Using the CLM-PDAF, the satellite

based soil moisture dataset ESA CCI (the European Space Agency Climate Change Initia-

tive17) was assimilated into CLM using the EnKF5 producing a high-resolution European

surface soil moisture (SSM) reanalysis (called ESSMRA hereafter) dataset. This product

overcomes the shortcomings of sparse spatial and temporal datasets and provides a better

estimate of SM than obtained only by modelling or by sparse observations alone.

4.2.1 Work Flow for Generation of ESSMRA

The 3 km ESSMRA is generated by first implementing the regional land surface model

setup coupled with the data assimilation framework as shown in Fig. 5a. In the second

step the ESA CCI satellite-based data is assimilated into the CLM-PDAF setup to generate

the daily 3 km ESSMRA product over Europe for the 2000 – 2015 time period (Fig. 5b).

The ESSMRA dataset is also compared with other global soil moisture reanalysis products

from the European Centre for Medium-Range Weather Forecasts Reanalysis 518(ERA5),

the Global Land Data Assimilation System19 (GLDAS) and the Global Land Evaporation

Amsterdam Model20 (GLEAM) data available at 0.25° resolution and hourly temporal res-

olution.

To assess the ability of ESSMRA to capture short term soil moisture variability in

comparison to other existing reanalysis products (such as ERA5, GLDAS and GLEAM),

summer standardised anomalies of SM were calculated (SMA =
SMjja−SM

σSM
) for a dry

year (2003), wet year (2007) and normal year (2011) using average SM values over June,

July and August (JJA) relative to the mean JJA SM for the 2000–2015 period. The spatial

distribution shows patterns of positive and negative SM anomalies over Europe across all

datasets for dry, wet and normal years (Fig. 6). For dry year 2003 (a record heat wave over

Europe), CLM-DA (CLM estimated soil moisture with data assimilation) shows a similar

area extent of negative anomalies as the ESACCI dataset and ERA5, whereas CLM-OL

(CLM estimated soil moisture without data assimilation), GLDAS and GLEAM exhibits

much stronger negative anomalies over central Europe. The SM anomaly from CLM-DA

for the wet and normal years (2007, 2011) has a better match with ESACCI and other
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5 Concluding Remarks

The parallel data assimilation framework (PDAF) has been coupled to the terrestrial mod-

elling platform (TSMP) in order to condition integrated terrestrial system simulations to

measurements. The framework shows a very good scalability on the Jülich supercomput-

ers. The performance of TSMP-PDAF has been tested in synthetic and real-world cases,

and at different spatial scales. Here we illustrate that the data assimilation performed well

for simulations at the hillslope scale and continental scale.
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