Massively Parallel Multigrid with Direct Coarse
Grid Solvers

M. Huber, N. Kohl, P. Leleux, U. Rude, D. Thonnes, B.
Wohlmuth

published in

NIC Symposium 2020
M. Mdller, K. Binder, A. Trautmann (Editors)

Forschungszentrum Jalich GmbH,

John von Neumann Institute for Computing (NIC),

Schriften des Forschungszentrums Julich, NIC Series, Vol. 50,
ISBN 978-3-95806-443-0, pp. 335.
http://hdl.handle.net/2128/24435

© 2020 by Forschungszentrum Jilich

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

Massively Parallel Multigrid with
Direct Coarse Grid Solvers

Markus Huber', Nils Kohl?, Philippe Leleux?, Ulrich Riide?*,
Dominik Thonnes?, and Barbara Wohlmuth'!

! Lehrstuhl fiir Numerische Mathematik, Technische Universitit Miinchen, Garching, Germany
E-mail: {wohlmuth, huber} @ma.tum.de

2 Lehrstuhl fiir Systemsimulation, Friedrich-Alexander Universitit, Erlangen, Germany
E-mail: {ulrich.ruede, dominik.thoennes, nils.kohl} @fau.de

3 Parallel Algorithms Team, CERFACS, Toulouse, France
E-mail: leleux@cerfacs.fr

Multigrid methods play an important role in the numerical approximation of partial differential
equations. As long as only a moderate number of processors is used, many alternatives can be
used as solver for the coarsest grid. However, when the number of processors increases, then
standard coarsening will stop while the problem is still large and the communication overhead
for solving the corresponding coarsest grid problem may dominate. In this case, the coarsest
grid must be agglomerated to only a subset of the processors. This article studies the use of
sparse direct methods for solving the coarsest grid problem as it arises in a multigrid hierarchy.
We use as test case a Stokes-type model and solve algebraic saddle point systems with up to
O(10'1) degrees of freedom on a current peta-scale supercomputer. We compare the sparse
direct solver with a preconditioned minimal residual iteration and show that the sparse direct
method can exhibit better parallel efficiency.

1 Introduction

The numerical approximation of partial differential equations as obtained from models in
science or engineering results in large sparse systems of algebraic equations. The solution
of such systems requires techniques that can be efficiently executed on high-performance
computing systems. In many cases, multigrid (MG) methods are asymptotically optimal
and fast in the sense that their complexity grows only linearly with the number of unknowns
and the constant of proportionality is only moderate.

However, the scaling of MG methods on modern supercomputers presents challenges
and requires well-designed software structures and a performance aware implementation.
In MG solvers it can be problematic that the parallel efficiency deteriorates when coarser
grid levels are processed. When proceeding to successively coarser grids both computation
and communication decrease, however, computation decreases faster than communication.
As a consequence the communication overhead on coarser grids is larger despite the fact
that the coarser grids demand progressively less work. To alleviate this trend, better load-
balancing and a redistribution of the grids onto a subset of the processes, may become
necessary to improve the performance.! The process of collecting the grid data and the
associated linear system to a smaller number of processes is called agglomeration.

In this article, we apply heuristic strategies in combination with the hierarchical hybrids
grids (HHG)? framework that realises a hybrid meshing approach. The scalability of the
geometric MG solver (GMG) in the HHG framework was analysed and shown capable

335

to solve problems with more than 10 degrees of freedom (DOF),’ i. e. a problem with
a solution vector that is 80 TByte large. It was also shown that the multigrid method
delivers an excellent fine grid performance but that the used coarse grid Krylov type solver
inhibits the overall parallel efficiency for very large scale applications. In this article we
will present agglomeration strategies in combination with a direct coarse grid solver to
compensate for this shortcoming.

The rest of this article is structured as follows: In Sec. 2, we introduce the model, the
finite element discretisation and the general solver setup. Then, Sec. 3.1 details the geo-
physical setting and Sec. 3.2 analyses the deteriorating scalability of the standard coarse
level solver of the HHG framework that is based on Krylov techniques. In Sec. 4.1, we
describe the conversion routines from he HHG data-structures to standard sparse matrix
data formats so that external solver frameworks can be employed. In Sec. 4.2, we intro-
duce a master-slave agglomeration technique. The MUMPS framework is presented in
Sec. 4.3. Sec. 5.1 considers MUMPS as standalone solver in several scaling experiments
and Sec. 5.2 analyses the weak scaling behaviour of the combined method.

2 Model Problem, Discretisation and Solver

Let 2 C R3 be an open and bounded domain. We consider the Stokes-type problem

—div (g(Vu—k(Vu)T)) +Vp=f inQ
div(u) =0 inQ (1)
u=g ondf)

where u denotes the velocity, p stands for the pressure, and f is a given forcing term.
For simplicity of notation we restrict ourselves to Dirichlet boundary conditions g and the
viscosity v is assumed to be uniformly positive definite and scalar but has possibly large
jumps. Problems of this structure can be found in many applications.

We use an initial tetrahedral mesh 7, and construct by uniform mesh refinement a hi-
erarchy of meshes 7o = {7¢,¢ = 0,...,L}, L > 0 for the MG scheme, linked with
linear interpolation for each component as prolongators and their adjoint as restrictions.
For the moment we assume that € is resolved by the initial triangulation but generalisa-
tions are possible.* For the discretisation, we apply the lowest equal-order finite elements
method stabilised with the pressure stabilisation Petrov-Galerkin (PSPG) technique.’ Us-
ing (component-wise) nodal basis functions for velocity and pressure, we obtain a hierar-
chy of 2 x 2-block structured algebraic systems.

In a previous work,®> we have compared different types of solvers and have found that
a monolithic multigrid method with Uzawa type smoother combined for velocity and pres-
sure achieves the best in time-to-solution and has the lowest memory requirements. In the
following studies, we will use a geometric multigrid solver in form of a mildly variable
V—cycle, i. e. we add for each coarser level 2 additional smoothing steps. This is denoted
by Wyar—cycle. The performance of the Uzawa smoother has also been theoretically and
numerically investigated.®

336

3 Hierarchical Hybrid Grids (HHG)

Geometric multigrid methods are often considered as difficult to implement efficiently in
parallel because of the reduced computational load on coarser grids. For our study the HHG
framework? will be used. It provides parallel data structures and algorithms. In particular it
features matrix-free concepts that enable the implementation of efficient parallel geometric
multigrid methods.” 3

3.1 Geophysical Setting

We study a problem that is motivated by geophysical simulations.* This leads to the Stokes
problem Eq. 1 on the spherical shell Q = {x € R3: 0.55 < ||x||2 < 1} and force term
f=Ra Tﬁ, where Ra = 3.49649 - 10% is the dimensionless Rayleigh number and 7 the

normalised Earth’s mantle temperature, as obtained from real-world measurements.’ The
mesh hierarchy has depth L = 6, plus 2 refinement levels used to get a structured coarse
grid.

We consider either the iso-viscous case (v(x,T) = 1) or a viscosity profile given by
lateral and radial variations:'®

1
=k) { 61 for x| > 1 - d

— Temb

v(x,T) = exp (2.99
1 otherwise

where d, is the relative thickness of the asthenosphere. Thus, the Earth mantle is assumed
to have layers with different viscosity characteristics. In particular, the asthenosphere,
i. e. the outermost layer is assumed to be mechanically weaker. In the geophysics commu-
nity, determining its size is still a field of active research.* 10 Here, we choose a thickness
of 410 km for the asthenosphere and a corresponding viscosity jump by about a factor of
145. To close the system, we apply Dirichlet boundary conditions: on the surface we use
plate velocity data,!' and at the core-mantle boundary we apply no-slip conditions. The
problem can now be solved by the monolithic Uzawa multigrid method by iterating until
a residual reduction by five orders of magnitude has been reached. Note that for the sim-
ulations of systems subject to several types of error, e. g. model or measurement error, the
specified tolerance is suitable to obtain a solution with an appropriate accuracy.

3.2 Standard Iterative HHG Coarse Level Solver

Initially, we employ the standard Krylov iterative method provided by the HHG pack-
age, i. e. a block-preconditioned minimal residual (pminres) iteration. This coarsest grid
iteration is executed within each V-cycle with a stopping criterion enforcing that the pre-
conditioned residual is reduced by three orders of magnitude.

The block-preconditioner here consists of a velocity preconditioner. For this the ve-
locity block is approximately solved by a Jacobi-preconditioned conjugate gradient (PCG)
method and we apply a lumped mass-matrix preconditioner for the pressure. The accuracy
of the PCG method is specified by a relative residual reduction of two orders of magni-
tude. The use of this method is motivated by the fact that Krylov space methods can be
easily implemented and parallelised. However, the error reduction depends on the condi-
tion number of the system matrix that deteriorates with the mesh size tending to zero. In

337

extreme scale computing, even the coarsest mesh can be large and have a small mesh size,
when the number of processors is very large. Consequently, an increasing number of itera-
tions become necessary to solve the problem on the coarsest grid with sufficient accuracy.
Additionally, the number of iterations can depend sensitively on the viscosity variations.

We carry out our experiments on JUWELS a peta-scale supercomputers at the Jiilich
Supercomputing Centre ranked on position 30 of the TOP5002 list (June 2019). The com-
pute nodes are Intel Xeon Platinum 8168 processors with 2-sockets, each of 24 cores. The
nodes have 96 GB memory and are linked with an Infiniband interconnection system.

In Tab. 1, we present the run-times (in seconds) averaged over the iterations of the MG
scheme for the scenarios iso-viscous and the asthenosphere scenario with 410 km thickness,
denoted by jump-410. We observe that the scalability is overall acceptable, but somewhat
better in the iso-viscous case than for variable viscosity when the efficiency decreases to
less than 75 %. For a more detailed analysis, we differentiate between the fine and the
coarse grid average compute times. We observe then that the average run-times for the
fine grids behave robustly across the scaling to large processor numbers, but the average
timings for the coarse grid solver deteriorates. Note that this is expected, since we are
using a sub-optimal algorithm to solve the system on the coarsest level.

The number of iterations required to reduce the residual by five orders of magnitude
depends also on the shape of the elements in the triangulation of the input mesh. Thus,
the iteration number is not constant when refining the mesh due to the viscosity variation
and when unfavourable element shapes are created. For the iso-viscous case, we observe
that 8 iterations are needed for a moderately sized problem and that even only 4 iterations
are needed for the largest problems. For the jump-410 scenario the number of iterations is
around 15 iterations in all cases. Using this as the baseline performance, we now turn to
study an alternative robust coarse level solver.

scenarios iso-viscous jump-410

proc. |DOF DOF coarse ||iter |total | fine|coarse |par. eff. || iter [total | fine |coarse |par. eff.
1920 |2.1-10'°|9.22.10* 8158.6/57.6| 1.0/ 1.00| 15/61.0/57.9| 3.1| 1.00
15360(4.3 - 10'°(6.96 - 10° 4166.1163.2| 29| 0.89] 13[83.0/62.0| 21.0| 0.73
43200(1.7- 10 {1.94 - 108 4168.7|1653| 3.4| 085| 14(82.0(63.7| 18.3| 0.74

Table 1. Average time (in seconds) over the iterations of the mildly variable V' —cycle: total, fine and coarse grid
timings for iso-viscous and 410 asthenosphere scenario.

4 Coarse Level Strategies

To reduce the overhead of the coarse grid solution phase, we first develop an agglomeration
algorithm such that the coarse grid solution can be executed on fewer processors. This
reduces communication overhead and helps to improve the scaling behaviour for very large
computations.

Ahttps://www.top500.0rg

338

Our solution strategy on the coarse level consists of the following three steps:

1. Convert HHG format to sparse matrix data-format and agglomeration,
2. Solve the coarse level problem with an external library,

3. Redistribute and convert the approximation into HHG format.

4.1 Interfacing the Coarse Level Solver

One of the major advantages of the HHG framework is the highly-efficient data format
combined with matrix-free techniques, which allows treating very large systems. On the
other hand, these data-structures are not naturally compatible with software packages like
HYPRE, MUMPS, or PETSc. An interoperability of HHG with these packages would be
useful to benefit from the functionality, variability, and efficiency of such packages. To
flexibly use these different software packages, the data from HHG must be converted in a
classical sparse matrix data format using arrays for indices and values, e. g. the coordinate
list (COO) format as used by the MUMPS solver. Essential for these formats is a unique
global numbering of the DOFs across the processes.> We proceed by an ascending order
per process and number first all DOFs of one process and then continue with the next
one. By these identifications, the HHG matrices can be easily converted per process into
array-like data structures.

4.2 Master-Slave Agglomeration

In a multigrid iteration the number of DOFs per process decreases when the algorithm pro-
ceeds to coarser grid levels. In the case of HHG, the load of the whole multigrid hierarchy
is completely distributed based on the input mesh. Hence, the balance between compu-
tation and communication worsens on coarser grid levels. We will address this problem
here by executing the coarse grid subroutines on fewer processes while letting the other
processes remain idle.

To achieve this, we propose a master-slave agglomeration,! where data from several
slave processes is accumulated to few master processes. Here we define the reduction
factor r € N> as the size by which the number of computing processes |P| is divided
such that we run on: m = |P|/r master processes with the accumulated data and the slave
processes stay idle. We assume for simplicity that the reduction factor r is a divisor of |P)|.
A case with |P| = 5 and a reduction factor r = 3 and m = 2 is shown in Fig. 1. Once the

N AN\

Do V4! p2 p3 Pa D5

Figure 1. Master-slave agglomeration with reduction factor r = 3.

master processes have computed the results, they re-distribute them to the slave processes.
The application to sparse matrix data formats involves array-like data-structures such as

339

C++ vectors. This simplifies the implementation of the agglomeration algorithm, since we
only need to concatenate vectors.

Note that the selection of a suitable r is challenging and should respect the parallel
architecture. In our case, we have chosen to agglomerate all the data from the same node.
This makes it possible to perform the agglomeration with minimal communication over-
head, but may then put extra communication burden on the parallel coarse grid solver. For
our problems the agglomeration of the system matrix is performed only once, and is then
kept in memory on the master processes. Note that for problems with evolving matrices,
e. g. with time dependence or changing viscosity, the agglomerated matrix may have to be
updated in each iteration.

4.3 MUMPS: A Parallel Sparse Direct Solver

MUMPS (MUTtifrontal Massively Parallel direct Solver)b is a package for solving sparse
systems of linear equations with symmetric (positive-definite or indefinite) or unsymmetric
matrices. It is based on a direct method where the matrix is factorised into the product of
triangular matrices which are then used to compute the solution using forward and back-
ward substitution. The package is being developed by the MUMPS consortium. In the MG
context, MUMPS has the advantage of being more robust than iterative methods, both in
terms of run-time and accuracy. Also, with this solver the most consuming computations
have to be performed only once for the whole MG scheme, when the factorisation of the
matrix on the coarsest level can be reused.

MUMPS is a solver based on the multifrontal scheme where the factorisation of the
input sparse matrix is achieved through a sequence of operations on relatively small dense
matrices called “fronts”.!? Like most direct solvers, MUMPS achieves the solution of a
system in three steps. Starting with a preprocessing followed by a symbolic factorisation
(Analysis step), MUMPS then performs the actual factorisation of the fronts (Factorisation
step). Most of the computational cost is spent in these 2 phases which are performed only
once for a specific matrix. Finally, for each actual right hand side, the forward elimination
and backward substitution operations are performed (Solve step).

Parallelism in MUMPS is implemented through a hybrid MPI/OpenMP model which
makes the solver suited to modern distributed memory machines equipped with multicore
Pprocessors.

5 Scaling Behaviour

In this section, we study the performance of the monolithic Uzawa multigrid method when
a direct method is used as the coarsest level solver. The combined algorithm is imple-
mented in the HHG framework, see Sec. 3, and the MUMPS library (version 5.1.2) is used
for the coarsest grid problem, see Sec. 4.3. As example problem we study the discretised
Stokes equation 1 with the settings described in Sec. 3.2. We use agglomeration techniques
of 4.2 to run MUMPS on fewer processes. The computations are executed on the peta-scale
supercomputer JUWELS. We start with a performance evaluation of the MUMPS solver in
standalone mode for the coarsest level system of Sec. 5.1. This study is used to determine
the best configuration to be used within the multigrid method of Sec. 5.2.

bhttp://MUMPstolver.org/

340

5.1 Performance of the Direct Solver

In Tab. 2, we display results for a strong scaling study for different problem sizes of Sec. 3.2
and focus on the jump-410 problem that was found to be the most challenging in Sec. 3.2.
Note that this strong scaling experiment is reversed in the sense that we start with the
number of processes used for the finest grid problem such that the linear system is spread
across all processors. In this mode, the coarsest grid computation suffers from too small
granularity. Then we reduce the number of processes by an increasing reduction factor r,
see equation in Sec. 4.2. We therefore find the best choice for the number of processes m
that can be used for the coarsest grid problem, in order to minimise the run-time. Without
agglomeration, the set of unknowns on each process is very small (less than 152 DOFs)
leading to large communication overhead. This is clearly observed for the smallest problem
for which the total timing with » = 1 is 30 times higher than with a reduction by r = 48.
Thus using the reduced number of processes will be beneficial even if it will lead to idle
processes when used within HHG. For a more detailed analysis, we also report the timings
for analysis, factorisation, and solve phase separately.

To obtain minimal run-times for the problems with 1920, 15 360 and 43 200 processes,
the best choice is r = 48, r = 96 and r = 192, respectively. While all timings increase
with the problem size, the solve step is always much faster than the factorisation and anal-
ysis, so that in cases where the factorisation can be re-used, this will lead to significantly
better efficiency. Thus, when the cost of analysis and factorisation can be amortised over
several multigrid iterations, the overall compute times will become competitive with using
pminres as coarsest grid solver.

1920 15360 43200
" proc. | ana. fac. solve|| proc.| ana. fac. solve|| proc.| ana. fac. solve
1 1920 |4.97 25.69 31.84 || 15360 - - —1] 43200 - - -
24 80(1.52 1.26 0.02 640(13.89 26.08 0.23| 1800 - - -
48 40141 0.67 0.02 320(12.63 17.55 0.21 900 | 48.70 127.90 1.40
96 20144 0.80 0.02 160 |12.47 15.32 0.18 45014096 116.00 1.04
192 10149 1.28 0.03 80|12.88 16.81 0.18 225(38.63 97.72 1.02
576 - - - - - - - - 75138.49 9829 0.97

Table 2. Strong scaling study of the MUMPS sparse direct solver separated into analysis, factorisation and solve.

In a next set of experiments, we compare the efficiency of the direct solver for several
configurations of the Stokes problem. In Tab. 3, we consider three different mesh resolu-
tions of the problem for the iso-viscous and jump-410 scenarios. We use the agglomera-
tion factors as previously obtained for each problem size. Different from the behaviour of
pminres, we now observe that for a fixed problem size, the run-times remain stable for both
scenarios. This is expected with an elimination based method whose run-time behaviour
depends primarily only on the matrix nonzero structure. We finally observe that the direct
solver produces results with an accuracy up to 107'® in all cases, contrary to the the it-
erative pminres method. In practice, such an exact solution is not needed. Techniques to
approximate the solution while decreasing the computational and memory complexity of

341

proc. | DOF coarse || scenario analysis (s) factorisation (s) solve (s) | scaled residual
20 |99 1t || iso-viscous 1.47 0.69 0.02 1.8-107'8
jump-410 1.42 0.68 0.02 1.9-107%7
160 | 6.06. 105 || is0-viscous 12.46 15.18 0.19 5.7-1071%
jump-410 12.47 1532 0.18 1.2-10718
205 | 104106 || i0-viscous 37.04 117.1 050 | 5.31-107"
jump-410 37.13 1254 047 | 1.27-107'8

Table 3. Study of the influence of the viscosity scenario on the accuracy and run-time of the direct solver. Run-
times are separated in analysis, factorisation and solve step. Each process runs on a separate node.

the method could be considered, such as single precision computation'® or a suitable low
rank matrix approximation.'#

5.2 Performance Multigrid with Coarse Level Direct Solver

In this section, we apply the MUMPS sparse direct solver for the coarsest level problem
in the HHG multigrid framework. We focus again on the jump-410 scenario using the two
different coarsest level solvers, i. e. pminres from Sec. 3.2 and MUMPS as described in
Sec. 4.3. In the following we will compare the average run-times of the Vyar—cycle in a
weak-scaling scenario.

In Tab. 4, we present the result of experiments with up to 43 200 processes. For a
more detailed analysis, we display he fine grid and the coarse grid (i. e. MUMPS solve
phase) average times separately for the iterations, and we sum the total time of analysis
and factorisation for MUMPS. Additionally, we measure the total time for data transfer,
that is, the time to perform the agglomeration and conversion between HHG and MUMPS
data. According to the results from Tab. 2, we use the » = 48,96 and 192, respectively, for
agglomeration.

DOF . time (s)
proc. iter par. eff.
fine coarse total fine coarse | ana. & fac. trans.
1920 |2.1-10'° 9.22.10* || 15 |60.91 60.73 0.02 220 0.04 1.00
15360 | 4.3-10'° 6.96-10° || 13 | 69.90 67.28 0.20 31.11 0.25 0.87
43200 | 1.7-10' 1.94-10° || 14 | 80.06 69.25 1.02 136.36 0.65 0.76

Table 4. Weak scaling of the Vyar—cycle with a sparse direct and a simple Krylov coarse level solver. The run-
times for total, fine and coarse are averages over the iterations. The run-times for analysis, factorisation and data
transfer are the total timing.

In the scaling experiment we observe only a moderate increase in the average run-time
of the fine grids, and the total time for the data transfer is neglectable in the overall timing.
Moreover, the total coarse grid solves consume a fraction of less than 1.5 % of the overall
time to solution for the biggest test case. However, the analysis and factorisation are much
more costly, and thus these times may be a concern. Their timing grows up to 136.36 s

342

for the biggest test case which becomes 9.74 s per iteration, when considering the whole
solution process. For a fair comparison, this must be added to the 1.02 s of the coarse level
solve.

Using MUMPS decreases the times to process the coarsest grid by 40 % (resp. 80 %) as
compared to the pminres solver for the largest (resp. the middle) test case for the scenario
jump-410. Overall, the parallel efficiency of the solver has then been improved by 2 %
points for the biggest case and 13 % points for the middle case problem.

Finally, we note that solving the coarsest grid problem very accurately with MUMPS
has no effect on the multigrid convergence rate. This emphasises again the fact that such
a high accuracy would not be needed and it would be beneficial to reduce the cost of the
direct solver using appropriate approximation techniques.

6 Conclusion

Hierarchical hybrid grids multigrid iterative solvers in combination with an agglomeration
of the processors on the coarse grid show an excellent parallel performance for large scale
problems. Using a direct solver based on the MUMPS library results in an overall parallel
efficiency of 76 %. As a large test case, a Stokes type system with up to O(10'!) degrees
of freedom has been solved with to 43 200 processes on the peta-scale supercomputer
JUWELS.

Acknowledgements

The authors thank Patrick Amestoy, Jean-Yves L’excellent and Daniel Ruiz for their sup-
porting discussion on efficient usage of the MUMPS framework. This work was partly sup-
ported by the German Research Foundation through the Priority Programme 1648 “Soft-
ware for Exascale Computing” (SPPEXA) and WO671/11-1. The authors gratefully ac-
knowledge the Gauss Centre for Supercomputing e.V. (www.gauss—centre.eu) for
funding this project by providing computing time through the John von Neumann Insti-
tute for Computing (NIC) on the GCS Supercomputer JUWELS at Jiilich Supercomputing
Centre (JSCO).

References

1. D. A. May, P. Sanan, K. Rupp, M. G. Knepley, and B. F. Smith, Extreme-Scale Multi-
grid Components within PETSc, in Proceedings of the Platform for Advanced Sci-
entific Computing Conference, PASC 2016, Lausanne, Switzerland, Article No. 5,
2016.

2. B. Bergen and F. Hiilsemann, Hierarchical hybrid grids: Data structures and core
algorithms for multigrid, Numer. Linear Algebra Appl. 11, 279-291, 2004.

3. B. Gmeiner, M. Huber, L. John, U. Riide, and B. Wohlmuth, A quantitative perfor-
mance study for Stokes solvers at the extreme scale, J. Comput. Sci. 17, 509-521,
2016.

4. S. Bauer, M. Huber, S. Ghelichkhan, M. Mohr, U. Riide, and B. Wohlmuth, Large-
scale simulation of mantle convection based on a new matrix-free approach, J. Com-

put. Sci. 31, 60-76, 2019.

343

11.

12.

13.

14.

T. J. R. Hughes, L. P. Franca, and M. Balestra, A New Finite Element Formulation
for Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition:
A Stable Petrov-Galerkin Formulation of the stokes problem accommodating equal-
order interpolations, Comput. Methods Appl. Mech. Eng. 59, 85-99, 1986.

. W. Zulehner, Analysis of Iterative Methods for Saddle Point Problems: A Unified

Approach, Math. Comput. 71, 479-505, 2002.

. F. Hiilsemann, M. Kowarschik, M. Mohr, and U. Riide, Parallel Geometric Multi-

grid, in Numerical Solution of Partial Differential Equations on Parallel Computers,
A. M. Bruaset and A. Tveito (Editors), Springer, Lecture Notes in Computational
Science and Engineering 51, 165-208, 2005.

. B. Gmeiner, U. Riide, H. Stengel, C. Waluga, and B. Wohlmuth, Towards textbook

efficiency for parallel multigrid, Numer. Math. Theory Methods Appl. 8, 2246,
2015.

. N. A. Simmons, S. C. Myers, G. Johannesson, E. Matzel, and S. P. Grand, Evidence

for long-lived subduction of an ancient tectonic plate beneath the southern Indian
Ocean, Geophys. Res. Lett. 42, 9270-9278, 2015.

. D. Rhodri Davies, S. Goes, J. H. Davies, B. S. A. Schuberth, H.-P. Bunge, and J. Rit-

sema, Reconciling dynamic and seismic models of Earth’s lower mantle: The dom-
inant role of thermal heterogeneity, Earth and Planetary Science Letters 353-354,
253-269, 2012.

R. D. Miiller, M. Sdrolias, C. Gaina, and W. R. Roest, Age, spreading rates, and
spreading asymmetry of the world’s ocean crust, Geochem. Geophys. Geosyst. 9,
1525-2027, 2008.

P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, On the Complexity of the
Block Low-Rank Multifrontal Factorization, SIAM Journal on Scientific Computing
39, A1710-A1740, 2017.

M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek,
and S. Tomov, Accelerating scientific computations with mixed precision algorithms,
Computer Physics Communications 180, 2526-2533, 2009.

M. Bebendorf and W. Hackbusch, Existence of H-matrix approximants to the inverse
FE-matrix of elliptic operators with L..-coefficients, Numerische Mathematik 95,
1-28, 2003.

344

