000874447 001__ 874447
000874447 005__ 20230522110537.0
000874447 0247_ $$2doi$$a10.3389/fneur.2020.00001
000874447 0247_ $$2Handle$$a2128/24514
000874447 0247_ $$2altmetric$$aaltmetric:75617423
000874447 0247_ $$2pmid$$apmid:32116995
000874447 0247_ $$2WOS$$aWOS:000517298900001
000874447 037__ $$aFZJ-2020-01448
000874447 082__ $$a610
000874447 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$eCorresponding author
000874447 245__ $$aPET/MRI Radiomics in Patients With Brain Metastases
000874447 260__ $$aLausanne$$bFrontiers Research Foundation$$c2020
000874447 3367_ $$2DRIVER$$aarticle
000874447 3367_ $$2DataCite$$aOutput Types/Journal article
000874447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583839837_2514
000874447 3367_ $$2BibTeX$$aARTICLE
000874447 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874447 3367_ $$00$$2EndNote$$aJournal Article
000874447 520__ $$aAlthough a variety of imaging modalities are used or currently being investigated for patients with brain tumors including brain metastases, clinical image interpretation to date uses only a fraction of the underlying complex, high-dimensional digital information from routinely acquired imaging data. The growing availability of high-performance computing allows the extraction of quantitative imaging features from medical images that are usually beyond human perception. Using machine learning techniques and advanced statistical methods, subsets of such imaging features are used to generate mathematical models that represent characteristic signatures related to the underlying tumor biology and might be helpful for the assessment of prognosis or treatment response, or the identification of molecular markers. The identification of appropriate, characteristic image features as well as the generation of predictive or prognostic mathematical models is summarized under the term radiomics. This review summarizes the current status of radiomics in patients with brain metastases.
000874447 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000874447 536__ $$0G:(GEPRIS)428090865$$aDFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie $$c428090865$$x1
000874447 588__ $$aDataset connected to CrossRef
000874447 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b1
000874447 7001_ $$0P:(DE-HGF)0$$aRuge, Maximillian I.$$b2
000874447 7001_ $$0P:(DE-HGF)0$$aVisser-Vandewalle, Veerle$$b3
000874447 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b4
000874447 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b5
000874447 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b6
000874447 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b7
000874447 773__ $$0PERI:(DE-600)2564214-5$$a10.3389/fneur.2020.00001$$gVol. 11, p. 1$$p1$$tFrontiers in neurology$$v11$$x1664-2295$$y2020
000874447 8564_ $$uhttps://juser.fz-juelich.de/record/874447/files/Lohmann_2020_Front%20Neurol_PET%20MRI%20Radiomics%20in%20Patients%20With%20Brain%20Metastases.pdf$$yOpenAccess
000874447 8564_ $$uhttps://juser.fz-juelich.de/record/874447/files/Lohmann_2020_Front%20Neurol_PET%20MRI%20Radiomics%20in%20Patients%20With%20Brain%20Metastases.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874447 909CO $$ooai:juser.fz-juelich.de:874447$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ
000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b1$$kFZJ
000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b4$$kFZJ
000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ
000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b6$$kFZJ
000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b7$$kFZJ
000874447 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000874447 9141_ $$y2020
000874447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874447 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROL : 2017
000874447 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874447 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874447 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874447 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874447 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874447 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000874447 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874447 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000874447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874447 920__ $$lyes
000874447 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000874447 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000874447 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2
000874447 980__ $$ajournal
000874447 980__ $$aVDB
000874447 980__ $$aUNRESTRICTED
000874447 980__ $$aI:(DE-Juel1)INM-3-20090406
000874447 980__ $$aI:(DE-Juel1)INM-4-20090406
000874447 980__ $$aI:(DE-Juel1)INM-11-20170113
000874447 9801_ $$aFullTexts