000874447 001__ 874447 000874447 005__ 20230522110537.0 000874447 0247_ $$2doi$$a10.3389/fneur.2020.00001 000874447 0247_ $$2Handle$$a2128/24514 000874447 0247_ $$2altmetric$$aaltmetric:75617423 000874447 0247_ $$2pmid$$apmid:32116995 000874447 0247_ $$2WOS$$aWOS:000517298900001 000874447 037__ $$aFZJ-2020-01448 000874447 082__ $$a610 000874447 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$eCorresponding author 000874447 245__ $$aPET/MRI Radiomics in Patients With Brain Metastases 000874447 260__ $$aLausanne$$bFrontiers Research Foundation$$c2020 000874447 3367_ $$2DRIVER$$aarticle 000874447 3367_ $$2DataCite$$aOutput Types/Journal article 000874447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583839837_2514 000874447 3367_ $$2BibTeX$$aARTICLE 000874447 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000874447 3367_ $$00$$2EndNote$$aJournal Article 000874447 520__ $$aAlthough a variety of imaging modalities are used or currently being investigated for patients with brain tumors including brain metastases, clinical image interpretation to date uses only a fraction of the underlying complex, high-dimensional digital information from routinely acquired imaging data. The growing availability of high-performance computing allows the extraction of quantitative imaging features from medical images that are usually beyond human perception. Using machine learning techniques and advanced statistical methods, subsets of such imaging features are used to generate mathematical models that represent characteristic signatures related to the underlying tumor biology and might be helpful for the assessment of prognosis or treatment response, or the identification of molecular markers. The identification of appropriate, characteristic image features as well as the generation of predictive or prognostic mathematical models is summarized under the term radiomics. This review summarizes the current status of radiomics in patients with brain metastases. 000874447 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0 000874447 536__ $$0G:(GEPRIS)428090865$$aDFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie $$c428090865$$x1 000874447 588__ $$aDataset connected to CrossRef 000874447 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b1 000874447 7001_ $$0P:(DE-HGF)0$$aRuge, Maximillian I.$$b2 000874447 7001_ $$0P:(DE-HGF)0$$aVisser-Vandewalle, Veerle$$b3 000874447 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b4 000874447 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b5 000874447 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b6 000874447 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b7 000874447 773__ $$0PERI:(DE-600)2564214-5$$a10.3389/fneur.2020.00001$$gVol. 11, p. 1$$p1$$tFrontiers in neurology$$v11$$x1664-2295$$y2020 000874447 8564_ $$uhttps://juser.fz-juelich.de/record/874447/files/Lohmann_2020_Front%20Neurol_PET%20MRI%20Radiomics%20in%20Patients%20With%20Brain%20Metastases.pdf$$yOpenAccess 000874447 8564_ $$uhttps://juser.fz-juelich.de/record/874447/files/Lohmann_2020_Front%20Neurol_PET%20MRI%20Radiomics%20in%20Patients%20With%20Brain%20Metastases.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000874447 909CO $$ooai:juser.fz-juelich.de:874447$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ 000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b1$$kFZJ 000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b4$$kFZJ 000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ 000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b6$$kFZJ 000874447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b7$$kFZJ 000874447 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0 000874447 9141_ $$y2020 000874447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000874447 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000874447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROL : 2017 000874447 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000874447 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000874447 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000874447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000874447 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000874447 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000874447 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review 000874447 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000874447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000874447 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000874447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000874447 920__ $$lyes 000874447 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000874447 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1 000874447 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2 000874447 980__ $$ajournal 000874447 980__ $$aVDB 000874447 980__ $$aUNRESTRICTED 000874447 980__ $$aI:(DE-Juel1)INM-3-20090406 000874447 980__ $$aI:(DE-Juel1)INM-4-20090406 000874447 980__ $$aI:(DE-Juel1)INM-11-20170113 000874447 9801_ $$aFullTexts