000874451 001__ 874451
000874451 005__ 20210130004659.0
000874451 0247_ $$2doi$$a10.1039/C9NR06624A
000874451 0247_ $$2ISSN$$a2040-3364
000874451 0247_ $$2ISSN$$a2040-3372
000874451 0247_ $$2pmid$$apmid:31560012
000874451 0247_ $$2WOS$$aWOS:000512634500028
000874451 037__ $$aFZJ-2020-01452
000874451 082__ $$a600
000874451 1001_ $$00000-0001-6236-7391$$aKindsmüller, Andreas$$b0
000874451 245__ $$aOn the role of the metal oxide/reactive electrode interface during the forming procedure of valence change ReRAM devices
000874451 260__ $$aCambridge$$bRSC Publ.$$c2019
000874451 3367_ $$2DRIVER$$aarticle
000874451 3367_ $$2DataCite$$aOutput Types/Journal article
000874451 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583849157_2514
000874451 3367_ $$2BibTeX$$aARTICLE
000874451 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874451 3367_ $$00$$2EndNote$$aJournal Article
000874451 520__ $$aOne of the key issues of resistive switching memory devices is the so called “forming” process, a one time process at a high voltage, which initializes the resistive switching at significantly lower voltages. With this study we identify the influence of the different layers – namely the insulating oxide layer (ZrO2 and Ta2O5) and the reactive ohmic electrode layer (Hf, Ta and Pt) – on the forming voltage and the pristine capacitance of the devices. For this, the forming voltage and pristine capacitance is measured in dependence of the oxide layer thickness with different electrodes. The different slopes of the forming voltage – thickness relation for different top electrodes give an indication that the reactive ohmic electrode is oxidized from the oxide layer underneath and that the degree of the oxidation depends on the thickness of the oxide layer as well as the materials used for the oxide and electrode layer. This finding could be confirmed by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) measurements. From the electrical measurements and the TEM images the thickness of the oxidized electrode layer could be estimated. The degree of the oxidation depends on the oxygen affinity of the oxide and electrode material. The interface dependent (thickness independent) part of the forming voltage is determined by the material of the electrode. The magnitude of this interface voltage could be correlated to the oxide free energy of the electrode material. These results can support the ongoing research towards resistive switching memory devices with a very low forming voltage or forming free behaviour.
000874451 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000874451 588__ $$aDataset connected to CrossRef
000874451 7001_ $$0P:(DE-Juel1)173622$$aMeledin, Alexander$$b1$$ufzj
000874451 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b2
000874451 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3
000874451 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b4$$eCorresponding author
000874451 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C9NR06624A$$gVol. 11, no. 39, p. 18201 - 18208$$n39$$p18201 - 18208$$tNanoscale$$v11$$x2040-3372$$y2019
000874451 8564_ $$uhttps://juser.fz-juelich.de/record/874451/files/c9nr06624a.pdf$$yRestricted
000874451 8564_ $$uhttps://juser.fz-juelich.de/record/874451/files/c9nr06624a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000874451 909CO $$ooai:juser.fz-juelich.de:874451$$pVDB
000874451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173622$$aForschungszentrum Jülich$$b1$$kFZJ
000874451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b2$$kFZJ
000874451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b3$$kFZJ
000874451 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000874451 9141_ $$y2020
000874451 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000874451 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2017
000874451 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874451 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874451 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874451 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874451 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874451 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874451 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874451 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874451 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2017
000874451 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000874451 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000874451 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000874451 980__ $$ajournal
000874451 980__ $$aVDB
000874451 980__ $$aI:(DE-Juel1)PGI-7-20110106
000874451 980__ $$aI:(DE-82)080009_20140620
000874451 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000874451 980__ $$aUNRESTRICTED