000874452 001__ 874452
000874452 005__ 20250813093402.0
000874452 0247_ $$2doi$$a10.1007/s00415-019-09690-6
000874452 0247_ $$2ISSN$$a0012-1037
000874452 0247_ $$2ISSN$$a0340-5354
000874452 0247_ $$2ISSN$$a0939-1517
000874452 0247_ $$2ISSN$$a1432-1459
000874452 0247_ $$2ISSN$$a1619-800X
000874452 0247_ $$2Handle$$a2128/28160
000874452 0247_ $$2altmetric$$aaltmetric:75712693
000874452 0247_ $$2pmid$$a32036423
000874452 0247_ $$2WOS$$aWOS:000515966700001
000874452 037__ $$aFZJ-2020-01453
000874452 082__ $$a610
000874452 1001_ $$0P:(DE-HGF)0$$aSchweitzer, F.$$b0
000874452 245__ $$aEffects of disease-modifying therapy on peripheral leukocytes in patients with multiple sclerosis
000874452 260__ $$aBerlin$$bSpringer85301$$c2021
000874452 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2020-02-08
000874452 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2021-07-01
000874452 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2021-07-01
000874452 3367_ $$2DRIVER$$aarticle
000874452 3367_ $$2DataCite$$aOutput Types/Journal article
000874452 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635842954_7870
000874452 3367_ $$2BibTeX$$aARTICLE
000874452 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874452 3367_ $$00$$2EndNote$$aJournal Article
000874452 520__ $$aModern disease-modifying therapies (DMTs) in multiple sclerosis (MS) have variable modes of action and selectively suppress or modulate the immune system. In this review, we summarize the predicted and intended as well as unwanted adverse effects on leukocytes in peripheral blood as a result of treatment with DMTs for MS. We link changes in laboratory tests to the possible therapeutic risks that include secondary autoimmunity, infections, and impaired response to vaccinations. Profound knowledge of the intended effects on leukocyte counts, in particular lymphocytes, explained by the mode of action, and adverse effects which may require additional laboratory and clinical vigilance or even drug discontinuation, is needed when prescribing DMTs to treat patients with MS.
000874452 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000874452 542__ $$2Crossref$$i2020-02-08$$uhttps://creativecommons.org/licenses/by/4.0
000874452 542__ $$2Crossref$$i2020-02-08$$uhttps://creativecommons.org/licenses/by/4.0
000874452 588__ $$aDataset connected to CrossRef
000874452 7001_ $$0P:(DE-HGF)0$$aLaurent, S.$$b1
000874452 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b2$$ufzj
000874452 7001_ $$0P:(DE-HGF)0$$aBarnett, Michael H.$$b3
000874452 7001_ $$0P:(DE-HGF)0$$aHartung, H. P.$$b4
000874452 7001_ $$0P:(DE-HGF)0$$aWarnke, C.$$b5$$eCorresponding author
000874452 77318 $$2Crossref$$3journal-article$$a10.1007/s00415-019-09690-6$$bSpringer Science and Business Media LLC$$d2020-02-08$$n7$$p2379-2389$$tJournal of Neurology$$v268$$x0340-5354$$y2020
000874452 773__ $$0PERI:(DE-600)1421299-7$$a10.1007/s00415-019-09690-6$$n7$$p2379-2389$$tJournal of neurology$$v268$$x0340-5354$$y2021
000874452 8564_ $$uhttps://juser.fz-juelich.de/record/874452/files/Schweitzer2021_Article_EffectsOfDisease-modifyingTher.pdf$$yOpenAccess
000874452 909CO $$ooai:juser.fz-juelich.de:874452$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874452 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874452 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000874452 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874452 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874452 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROL : 2015
000874452 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874452 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874452 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874452 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874452 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874452 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874452 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874452 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874452 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874452 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000874452 9141_ $$y2021
000874452 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b2$$kFZJ
000874452 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000874452 920__ $$lyes
000874452 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000874452 980__ $$ajournal
000874452 980__ $$aVDB
000874452 980__ $$aI:(DE-Juel1)INM-3-20090406
000874452 980__ $$aUNRESTRICTED
000874452 9801_ $$aFullTexts
000874452 999C5 $$1JH Noseworthy$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJM200009283431307$$p938 -$$tN Engl J Med$$uNoseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343(13):938–952$$v343$$y2000
000874452 999C5 $$1AJ Thompson$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0140-6736(18)30481-1$$p1622 -$$tLancet$$uThompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391(10130):1622–1636$$v391$$y2018
000874452 999C5 $$1M Farjam$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jns.2015.09.346$$p22 -$$tJ Neurol Sci$$uFarjam M, Zhang GX, Ciric B, Rostami A (2015) Emerging immunopharmacological targets in multiple sclerosis. J Neurol Sci 358(1–2):22–30$$v358$$y2015
000874452 999C5 $$1K Blauth$$2Crossref$$9-- missing cx lookup --$$a10.3389/fimmu.2015.00565$$p565 -$$tFront Immunol$$uBlauth K, Owens GP, Bennett JL (2015) The ins and outs of B cells in multiple sclerosis. Front Immunol 6:565$$v6$$y2015
000874452 999C5 $$1CA Dendrou$$2Crossref$$9-- missing cx lookup --$$a10.1038/nri3871$$p545 -$$tNat Rev Immunol$$uDendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558$$v15$$y2015
000874452 999C5 $$1S Saleem$$2Crossref$$uSaleem S, Anwar A, Fayyaz M, Anwer F, Anwar F (2019) An overview of therapeutic options in relapsing-remitting multiple sclerosis. Cureus 11(7):e5246$$y2019
000874452 999C5 $$2Crossref$$uEMA. Mayzent siponimod—Summary of opinion (initial authorisation). https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-mayzent_en.pdf. Accessed Nov 2019
000874452 999C5 $$1N Garg$$2Crossref$$9-- missing cx lookup --$$a10.1002/brb3.362$$pe00362 -$$tBrain Behav$$uGarg N, Smith TW (2015) An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav 5(9):e00362$$v5$$y2015
000874452 999C5 $$1A Marciniak$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bmcl.2018.10.042$$p3585 -$$tBioorg Med Chem Lett$$uMarciniak A, Camp SM, Garcia JGN, Polt R (2018) An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg Med Chem Lett 28(23–24):3585–3591$$v28$$y2018
000874452 999C5 $$1J Avasarala$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcph.945$$p1415 -$$tJ Clin Pharmacol$$uAvasarala J, Jain S, Urrea-Mendoza E (2017) Approach to fingolimod-induced lymphopenia in multiple sclerosis patients: do we have a roadmap? J Clin Pharmacol 57(11):1415–1418$$v57$$y2017
000874452 999C5 $$1G Comi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msard.2019.01.038$$p168 -$$tMult Scler Relat Disord$$uComi G, Cook S, Giovannoni G, Rieckmann P, Sorensen PS, Vermersch P, Galazka A, Nolting A, Hicking C, Dangond F (2019) Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult Scler Relat Disord 29:168–174$$v29$$y2019
000874452 999C5 $$1G Francis$$2Crossref$$9-- missing cx lookup --$$a10.1177/1352458513500551$$p471 -$$tMult Scler$$uFrancis G, Kappos L, O’Connor P, Collins W, Tang D, Mercier F, Cohen JA (2014) Temporal profile of lymphocyte counts and relationship with infections with fingolimod therapy. Mult Scler 20(4):471–480$$v20$$y2014
000874452 999C5 $$1D Focosi$$2Crossref$$9-- missing cx lookup --$$a10.1002/rmv.2077$$pe2077 -$$tRev Med Virol$$uFocosi D, Tuccori M, Maggi F (2019) Progressive multifocal leukoencephalopathy and anti-CD20 monoclonal antibodies: what do we know after 20 years of rituximab. Rev Med Virol 29:e2077$$v29$$y2019
000874452 999C5 $$2Crossref$$uEMA. Tysabri—EPAR—product information. https://www.ema.europa.eu/en/documents/product-information/tysabri-epar-product-information_en.pdf. Accessed 28 Nov 2019
000874452 999C5 $$2Crossref$$uHHS. Common Terminology criteria for adverse events (CTCAE) 5.0. https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. Accessed 5 Dec 2019
000874452 999C5 $$1F Trepel$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01468720$$p511 -$$tKlin Wochenschr$$uTrepel F (1974) Number and distribution of lymphocytes in man. A critical analysis. Klin Wochenschr 52(11):511–515$$v52$$y1974
000874452 999C5 $$1J Westermann$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1365-3083.1990.tb02775.x$$p327 -$$tScand J Immunol$$uWestermann J, Schwinzer R, Jecker P, Pabst R (1990) Lymphocyte subsets in the blood. The influence of splenectomy, splenic autotransplantation, ageing, and the site of blood sampling on the number of B, T, CD4+, and CD8+ lymphocytes in the rat. Scand J Immunol 31(3):327–334$$v31$$y1990
000874452 999C5 $$2Crossref$$uFDA. Lemtrada label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103948s5158lbl.pdf. Accessed 9 Dec 2019
000874452 999C5 $$2Crossref$$uEMA. Lemtrada—product information. https://www.ema.europa.eu/en/documents/referral/lemtrada-article-20-procedure-product-information_en.pdf. Accessed 9 Dec 2019
000874452 999C5 $$1JA Cohen$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0140-6736(12)61769-3$$p1819 -$$tLancet$$uCohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, Havrdova E, Selmaj KW, Weiner HL, Fisher E, Brinar VV, Giovannoni G, Stojanovic M, Ertik BI, Lake SL, Margolin DH, Panzara MA, Compston DA, Investigators C-MI (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380(9856):1819–1828$$v380$$y2012
000874452 999C5 $$1E Havrdova$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000004313$$p1107 -$$tNeurology$$uHavrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G, Schippling S, Selmaj KW, Traboulsee A, Compston DAS, Margolin DH, Thangavelu K, Rodriguez CE, Jody D, Hogan RJ, Xenopoulos P, Panzara MA, Coles AJ, Care-Ms I, Investigators C (2017) Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 89(11):1107–1116$$v89$$y2017
000874452 999C5 $$1AG Vakrakou$$2Crossref$$9-- missing cx lookup --$$a10.1186/s12883-018-1183-4$$p178 -$$tBMC Neurol$$uVakrakou AG, Tzanetakos D, Valsami S, Grigoriou E, Psarra K, Tzartos J, Anagnostouli M, Andreadou E, Evangelopoulos ME, Koutsis G, Chrysovitsanou C, Gialafos E, Dimitrakopoulos A, Stefanis L, Kilidireas C (2018) A case of Alemtuzumab-induced neutropenia in multiple sclerosis in association with the expansion of large granular lymphocytes. BMC Neurol 18(1):178$$v18$$y2018
000874452 999C5 $$1Y Hu$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1365-2567.2009.03115.x$$p260 -$$tImmunology$$uHu Y, Turner MJ, Shields J, Gale MS, Hutto E, Roberts BL, Siders WM, Kaplan JM (2009) Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 128(2):260–270$$v128$$y2009
000874452 999C5 $$1S von Kutzleben$$2Crossref$$9-- missing cx lookup --$$a10.1111/imm.12696$$p444 -$$tImmunology$$uvon Kutzleben S, Pryce G, Giovannoni G, Baker D (2017) Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. Immunology 150(4):444–455$$v150$$y2017
000874452 999C5 $$1T Ruck$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000006648$$pe2233 -$$tNeurology$$uRuck T, Pfeuffer S, Schulte-Mecklenbeck A, Gross CC, Lindner M, Metze D, Ehrchen J, Sondermann W, Pul R, Kleinschnitz C, Wiendl H, Meuth SG, Klotz L (2018) Vitiligo after alemtuzumab treatment: secondary autoimmunity is not all about B cells. Neurology 91(24):e2233–e2237$$v91$$y2018
000874452 999C5 $$1J Zimmermann$$2Crossref$$9-- missing cx lookup --$$a10.3389/fneur.2017.00569$$p569 -$$tFront Neurol$$uZimmermann J, Buhl T, Muller M (2017) Alopecia universalis following alemtuzumab treatment in multiple sclerosis: a barely recognized manifestation of secondary autoimmunity—report of a case and review of the literature. Front Neurol 8:569$$v8$$y2017
000874452 999C5 $$2Crossref$$uEMA. Mavenclad—assessment report. https://www.ema.europa.eu/en/documents/assessment-report/mavenclad-epar-public-assessment-report_en.pdf. Accessed 29 Nov 2019
000874452 999C5 $$1B Ceronie$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-018-8830-y$$p1199 -$$tJ Neurol$$uCeronie B, Jacobs BM, Baker D, Dubuisson N, Mao Z, Ammoscato F, Lock H, Longhurst HJ, Giovannoni G, Schmierer K (2018) Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J Neurol 265(5):1199–1209$$v265$$y2018
000874452 999C5 $$1D Baker$$2Crossref$$9-- missing cx lookup --$$a10.1212/NXI.0000000000000360$$pe360 -$$tNeurol Neuroimmunol Neuroinflamm$$uBaker D, Herrod SS, Alvarez-Gonzalez C, Zalewski L, Albor C, Schmierer K (2017) Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol Neuroimmunol Neuroinflamm 4(4):e360$$v4$$y2017
000874452 999C5 $$1RM Savic$$2Crossref$$9-- missing cx lookup --$$a10.1007/s40262-017-0516-6$$p1245 -$$tClin Pharmacokinet$$uSavic RM, Novakovic AM, Ekblom M, Munafo A, Karlsson MO (2017) Population pharmacokinetics of cladribine in patients with multiple sclerosis. Clin Pharmacokinet 56(10):1245–1253$$v56$$y2017
000874452 999C5 $$1D Baker$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msard.2019.02.018$$p176 -$$tMult Scler Relat Disord$$uBaker D, Pryce G, Herrod SS, Schmierer K (2019) Potential mechanisms of action related to the efficacy and safety of cladribine. Mult Scler Relat Disord 30:176–186$$v30$$y2019
000874452 999C5 $$1O Stuve$$2Crossref$$9-- missing cx lookup --$$a10.1177/1756286419854986$$p175628641985498 -$$tTher Adv Neurol Disord$$uStuve O, Soelberg Soerensen P, Leist T, Giovannoni G, Hyvert Y, Damian D, Dangond F, Boschert U (2019) Effects of cladribine tablets on lymphocyte subsets in patients with multiple sclerosis: an extended analysis of surface markers. Ther Adv Neurol Disord 12:1756286419854986$$v12$$y2019
000874452 999C5 $$1J Bruck$$2Crossref$$9-- missing cx lookup --$$a10.1111/exd.13548$$p611 -$$tExp Dermatol$$uBruck J, Dringen R, Amasuno A, Pau-Charles I, Ghoreschi K (2018) A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis. Exp Dermatol 27(6):611–624$$v27$$y2018
000874452 999C5 $$1AK Herrmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.freeradbiomed.2019.07.005$$p338 -$$tFree Radic Biol Med$$uHerrmann AK, Wullner V, Moos S, Graf J, Chen J, Kieseier B, Kurschus FC, Albrecht P, Vangheluwe P, Methner A (2019) Dimethyl fumarate alters intracellular Ca(2+) handling in immune cells by redox-mediated pleiotropic effects. Free Radic Biol Med 141:338–347$$v141$$y2019
000874452 999C5 $$1RJ Fox$$2Crossref$$9-- missing cx lookup --$$a10.1212/CPJ.0000000000000238$$p220 -$$tNeurol Clin Pract$$uFox RJ, Chan A, Gold R, Phillips JT, Selmaj K, Chang I, Novas M, Rana J, Marantz JL (2016) Characterizing absolute lymphocyte count profiles in dimethyl fumarate-treated patients with MS: patient management considerations. Neurol Clin Pract 6(3):220–229$$v6$$y2016
000874452 999C5 $$1EE Longbrake$$2Crossref$$uLongbrake EE, Naismith RT, Parks BJ, Wu GF, Cross AH (2015) Dimethyl fumarate-associated lymphopenia: risk factors and clinical significance. Mult Scler J Exp Transl Clin 1:2055217315596994$$y2015
000874452 999C5 $$1EE Longbrake$$2Crossref$$9-- missing cx lookup --$$a10.1177/1352458514559299$$p796 -$$tMult Scler$$uLongbrake EE, Cross AH (2015) Dimethyl fumarate associated lymphopenia in clinical practice. Mult Scler 21(6):796–797$$v21$$y2015
000874452 999C5 $$1FS Morales$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-019-09557-w$$p125 -$$tJ Neurol$$uMorales FS, Koralnik IJ, Gautam S, Samaan S, Sloane JA (2020) Risk factors for lymphopenia in patients with relapsing-remitting multiple sclerosis treated with dimethyl fumarate. J Neurol 267(1):125–131$$v267$$y2020
000874452 999C5 $$2Crossref$$uFDA. Tecifidera label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204063lbl.pdf. Accessed 9 Dec 2019
000874452 999C5 $$1V Brinkmann$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1476-5381.2009.00451.x$$p1173 -$$tBr J Pharmacol$$uBrinkmann V (2009) FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158(5):1173–1182$$v158$$y2009
000874452 999C5 $$1L Kappos$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa0909494$$p387 -$$tN Engl J Med$$uKappos L, Radue EW, O‘Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P, Group FS (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5):387–401$$v362$$y2010
000874452 999C5 $$1G Comi$$2Crossref$$9-- missing cx lookup --$$a10.1007/s40265-017-0814-1$$p1755 -$$tDrugs$$uComi G, Hartung HP, Bakshi R, Williams IM, Wiendl H (2017) Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs 77:1755–1768$$v77$$y2017
000874452 999C5 $$2Crossref$$uFDA. Gilenya (fingolimod) label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022527s008lbl.pdf. Accessed 9 Dec 2019
000874452 999C5 $$2Crossref$$uEMA. Gilenya—product information. https://www.ema.europa.eu/en/documents/product-information/gilenya-epar-product-information_en.pdf. Accessed 28 Nov 2019
000874452 999C5 $$2Crossref$$uCHMP. CHMP summary of positive opinion for Mayzent. https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-mayzent_en.pdf. Accessed 9 Dec 2019
000874452 999C5 $$2Crossref$$uhttps://www.tga.gov.au/apm-summary/mayzent
000874452 999C5 $$2Crossref$$uFDA. Mayzent (siponimod) label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209884s000lbl.pdf. Accessed 9 Dec 2019
000874452 999C5 $$1L Kappos$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0140-6736(18)30475-6$$p1263 -$$tLancet$$uKappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, Vermersch P, Arnold DL, Arnould S, Scherz T, Wolf C, Wallstrom E, Dahlke F, Investigators EC (2018) Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391(10127):1263–1273$$v391$$y2018
000874452 999C5 $$1CH Polman$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa044397$$p899 -$$tN Engl J Med$$uPolman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, Investigators A (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354(9):899–910$$v354$$y2006
000874452 999C5 $$1C Saure$$2Crossref$$9-- missing cx lookup --$$a10.1001/archneurol.2011.238$$p1428 -$$tArch Neurol$$uSaure C, Warnke C, Zohren F, Schroeder T, Bruns I, Cadeddu RP, Weigelt C, Fischer U, Kobbe G, Hartung HP, Adams O, Kieseier BC, Haas R (2011) Natalizumab and impedance of the homing of CD34+ hematopoietic progenitors. Arch Neurol 68(11):1428–1431$$v68$$y2011
000874452 999C5 $$1C Warnke$$2Crossref$$9-- missing cx lookup --$$a10.1177/1352458510385834$$p151 -$$tMult Scler$$uWarnke C, Smolianov V, Dehmel T, Andree M, Hengel H, Zohren F, Arendt G, Wiendl H, Haas R, Hartung HP, Adams O, Kieseier BC (2011) CD34+ progenitor cells mobilized by natalizumab are not a relevant reservoir for JC virus. Mult Scler 17(2):151–156$$v17$$y2011
000874452 999C5 $$1T Koudriavtseva$$2Crossref$$9-- missing cx lookup --$$a10.1111/cei.12261$$p320 -$$tClin Exp Immunol$$uKoudriavtseva T, Sbardella E, Trento E, Bordignon V, D’Agosto G, Cordiali-Fei P (2014) Long-term follow-up of peripheral lymphocyte subsets in a cohort of multiple sclerosis patients treated with natalizumab. Clin Exp Immunol 176(3):320–326$$v176$$y2014
000874452 999C5 $$1O Stuve$$2Crossref$$9-- missing cx lookup --$$a10.1001/archneur.63.10.1383$$p1383 -$$tArch Neurol$$uStuve O, Marra CM, Bar-Or A, Niino M, Cravens PD, Cepok S, Frohman EM, Phillips JT, Arendt G, Jerome KR, Cook L, Grand’Maison F, Hemmer B, Monson NL, Racke MK (2006) Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol 63(10):1383–1387$$v63$$y2006
000874452 999C5 $$1PS Rommer$$2Crossref$$9-- missing cx lookup --$$a10.3389/fimmu.2019.01564$$p1564 -$$tFront Immunol$$uRommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, Illes Z, Warnke C, Laurent S, Weber MS, Zhang Y, Stuve O (2019) Immunological aspects of approved MS therapeutics. Front Immunol 10:1564$$v10$$y2019
000874452 999C5 $$1PS Sorensen$$2Crossref$$9-- missing cx lookup --$$a10.1177/1756285615601933$$p44 -$$tTher Adv Neurol Disord$$uSorensen PS, Blinkenberg M (2016) The potential role for ocrelizumab in the treatment of multiple sclerosis: current evidence and future prospects. Ther Adv Neurol Disord 9(1):44–52$$v9$$y2016
000874452 999C5 $$1S Gingele$$2Crossref$$9-- missing cx lookup --$$a10.3390/cells8010012$$p12 -$$tCells$$uGingele S, Jacobus TL, Konen FF, Hummert MW, Suhs KW, Schwenkenbecher P, Ahlbrecht J, Mohn N, Muschen LH, Bonig L, Alvermann S, Schmidt RE, Stangel M, Jacobs R, Skripuletz T (2018) Ocrelizumab depletes CD20(+) T cells in multiple sclerosis patients. Cells 8(1):12$$v8$$y2018
000874452 999C5 $$1SL Hauser$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1601277$$p221 -$$tN Engl J Med$$uHauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L, Opera I, Investigators OIC (2017) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 376(3):221–234$$v376$$y2017
000874452 999C5 $$2Crossref$$uEMA. Ocrevus—EPAR—product information. https://www.ema.europa.eu/en/documents/product-information/ocrevus-epar-product-information_en.pdf. Accessed 9 Dec 2019
000874452 999C5 $$1K Hawker$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.21867$$p460 -$$tAnn Neurol$$uHawker K, O’Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, Hauser S, Waubant E, Vollmer T, Panitch H, Zhang J, Chin P, Smith CH, Group OT (2009) Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 66(4):460–471$$v66$$y2009
000874452 999C5 $$1SL Hauser$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa0706383$$p676 -$$tN Engl J Med$$uHauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH, Group HT (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688$$v358$$y2008
000874452 999C5 $$1A Bar-Or$$2Crossref$$9-- missing cx lookup --$$a10.1007/s40265-014-0212-x$$p659 -$$tDrugs$$uBar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H (2014) Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74(6):659–674$$v74$$y2014
000874452 999C5 $$2Crossref$$uEMA. Aubagio—EPAR—product information. https://www.ema.europa.eu/en/documents/product-information/aubagio-epar-product-information_en.pdf. Accessed 9 Dec 2019
000874452 999C5 $$1G Comi$$2Crossref$$uComi G, Miller AE, Benamor M, Truffinet P, Poole EM, Freedman MS (2019) Characterizing lymphocyte counts and infection rates with long-term teriflunomide treatment: pooled analysis of clinical trials. Mult Scler 7:1352458519851981$$y2019
000874452 999C5 $$2Crossref$$uEMA. Tecfidera—product information. https://www.ema.europa.eu/en/documents/product-information/tecfidera-epar-product-information_en.pdf. Accessed 29 Nov 2019
000874452 999C5 $$1DJ Epstein$$2Crossref$$9-- missing cx lookup --$$a10.1093/ofid/ofy174$$pofy174 -$$tOpen Forum Infect Dis$$uEpstein DJ, Dunn J, Deresinski S (2018) Infectious complications of multiple sclerosis therapies: implications for screening, prophylaxis, and management. Open Forum Infect Dis 5(8):ofy174$$v5$$y2018
000874452 999C5 $$1A Winkelmann$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrneurol.2016.21$$p217 -$$tNat Rev Neurol$$uWinkelmann A, Loebermann M, Reisinger EC, Hartung HP, Zettl UK (2016) Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12(4):217–233$$v12$$y2016
000874452 999C5 $$1H Seto$$2Crossref$$9-- missing cx lookup --$$a10.2169/internalmedicine.55.7255$$p3383 -$$tIntern Med$$uSeto H, Nishimura M, Minamiji K, Miyoshi S, Mori H, Kanazawa K, Yasuda H (2016) Disseminated cryptococcosis in a 63-year-old patient with multiple sclerosis treated with fingolimod. Intern Med 55(22):3383–3386$$v55$$y2016
000874452 999C5 $$1MR Ciardi$$2Crossref$$9-- missing cx lookup --$$a10.1093/ofid/ofy356$$pofy356 -$$tOpen Forum Infect Dis$$uCiardi MR, Iannetta M, Zingaropoli MA, Salpini R, Aragri M, Annecca R, Pontecorvo S, Altieri M, Russo G, Svicher V, Mastroianni CM, Vullo V (2019) Reactivation of hepatitis B virus with immune-escape mutations after ocrelizumab treatment for multiple sclerosis. Open Forum Infect Dis 6(1):ofy356$$v6$$y2019
000874452 999C5 $$2Crossref$$uKKNMS. Qualitätshandbuch MS/NMOSD 2019. https://www.kompetenznetz-multiplesklerose.de/fachinformationen/qualitaetshandbuch/. Accessed 28 Nov 2019
000874452 999C5 $$1MIR Dudek$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-019-09391-0$$p2322 -$$tJ Neurol$$uDudek MIR, Thies K, Kammenhuber S, Bosel J, Rosche J (2019) HSV-2-encephalitis in a patient with multiple sclerosis treated with ocrelizumab. J Neurol 266(9):2322–2323$$v266$$y2019
000874452 999C5 $$1LJW Canham$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msard.2018.05.014$$p38 -$$tMult Scler Relat Disord$$uCanham LJW, Manara A, Fawcett J, Rolinski M, Mortimer A, Inglis KEA, Cottrell DA (2018) Mortality from Listeria monocytogenes meningoencephalitis following escalation to alemtuzumab therapy for relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 24:38–41$$v24$$y2018
000874452 999C5 $$1T Holmoy$$2Crossref$$9-- missing cx lookup --$$a10.1186/s12883-017-0848-8$$p65 -$$tBMC Neurol$$uHolmoy T, von der Lippe H, Leegaard TM (2017) Listeria monocytogenes infection associated with alemtuzumab—a case for better preventive strategies. BMC Neurol 17(1):65$$v17$$y2017
000874452 999C5 $$1D Rau$$2Crossref$$9-- missing cx lookup --$$a10.3390/ijms160714669$$p14669 -$$tInt J Mol Sci$$uRau D, Lang M, Harth A, Naumann M, Weber F, Tumani H, Bayas A (2015) Listeria meningitis complicating alemtuzumab treatment in multiple sclerosis-report of two cases. Int J Mol Sci 16(7):14669–14676$$v16$$y2015
000874452 999C5 $$1S Ruggieri$$2Crossref$$9-- missing cx lookup --$$a10.1001/jamaneurol.2018.0368$$p762 -$$tJAMA Neurol$$uRuggieri S, Logoteta A, Martini G, Bozzao A, De Giglio L (2018) Listeria monocytogenes-induced rhombencephalitis in a patient with multiple sclerosis treated with dimethyl fumarate. JAMA Neurol 75(6):762–763$$v75$$y2018
000874452 999C5 $$1EO Major$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1474-4422(18)30040-1$$p467 -$$tLancet Neurol$$uMajor EO, Yousry TA, Clifford DB (2018) Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: a decade of lessons learned. Lancet Neurol 17(5):467–480$$v17$$y2018
000874452 999C5 $$1S Vukusic$$2Crossref$$9-- missing cx lookup --$$a10.1001/jamaneurol.2019.2670$$pe192670 -$$tJAMA Neurol$$uVukusic S, Rollot F, Casey R, Pique J, Marignier R, Mathey G, Edan G, Brassat D, Ruet A, De Seze J, Maillart E, Zephir H, Labauge P, Derache N, Lebrun-Frenay C, Moreau T, Wiertlewski S, Berger E, Moisset X, Rico-Lamy A, Stankoff B, Bensa C, Thouvenot E, Heinzlef O, Al-Khedr A, Bourre B, Vaillant M, Cabre P, Montcuquet A, Wahab A, Camdessanche JP, Tourbah A, Guennoc AM, Hankiewicz K, Patry I, Nifle C, Maubeuge N, Labeyrie C, Vermersch P, Laplaud DA, Investigators O (2019) Progressive multifocal leukoencephalopathy incidence and risk stratification among natalizumab users in France. JAMA Neurol e192670. https://doi.org/10.1001/jamaneurol.2019.2670$$v2019$$y2019
000874452 999C5 $$1D Pavlovic$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.imbio.2018.01.002$$p508 -$$tImmunobiology$$uPavlovic D, Patel MA, Patera AC, Peterson I (2018) Progressive multifocal leukoencephalopathy C. T cell deficiencies as a common risk factor for drug associated progressive multifocal leukoencephalopathy. Immunobiology 223(6–7):508–517$$v223$$y2018
000874452 999C5 $$1SA Misbah$$2Crossref$$9-- missing cx lookup --$$a10.1111/cei.12948$$p342 -$$tClin Exp Immunol$$uMisbah SA (2017) Progressive multi-focal leucoencephalopathy—driven from rarity to clinical mainstream by iatrogenic immunodeficiency. Clin Exp Immunol 188(3):342–352$$v188$$y2017
000874452 999C5 $$1JR Berger$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000005529$$pe1815 -$$tNeurology$$uBerger JR, Cree BA, Greenberg B, Hemmer B, Ward BJ, Dong VM, Merschhemke M (2018) Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology 90(20):e1815–e1821$$v90$$y2018
000874452 999C5 $$1J Nakahara$$2Crossref$$9-- missing cx lookup --$$a10.1212/NXI.0000000000000559$$pe559 -$$tNeurol Neuroimmunol Neuroinflamm$$uNakahara J, Tomaske L, Kume K, Takata T, Kamada M, Deguchi K, Kufukihara K, Schneider R, Gold R, Ayzenberg I (2019) Three cases of non-carryover fingolimod-PML: is the risk in Japan increased? Neurol Neuroimmunol Neuroinflamm 6(3):e559$$v6$$y2019
000874452 999C5 $$1M Briner$$2Crossref$$9-- missing cx lookup --$$a10.1177/1756286419843450$$p175628641984345 -$$tTher Adv Neurol Disord$$uBriner M, Bagnoud M, Miclea A, Friedli C, Diem L, Chan A, Hoepner R, Salmen A (2019) Time course of lymphocyte repopulation after dimethyl fumarate-induced grade 3 lymphopenia: contribution of patient age. Ther Adv Neurol Disord 12:1756286419843450$$v12$$y2019
000874452 999C5 $$1LE Baldassari$$2Crossref$$uBaldassari LE, Feng J, Macaron G, Planchon SM, Alshehri E, Moss BP, Ontaneda D, Willis MA (2019) Tuberculosis screening in multiple sclerosis: effect of disease-modifying therapies and lymphopenia on the prevalence of indeterminate TB screening results in the clinical setting. Mult Scler J Exp Transl Clin 5(3):2055217319875467$$y2019
000874452 999C5 $$1S Bittner$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00115-019-0760-0$$p1245 -$$tNervenarzt$$uBittner S, Engel S, Lange C, Weber MS, Haghikia A, Luessi F, Korn T, Klotz L, Bayas A, Paul F, Heesen C, Stangel M, Wildemann B, Bergh FT, Tackenberg B, Trebst C, Warnke C, Linker R, Kerschensteiner M, Zettl U, Tumani H, Bruck W, Meuth SG, Kumpfel T, Hemmer B, Wiendl H, Gold R, Zipp F (2019) Diagnostics and treatment of tuberculosis under immunotherapy for multiple sclerosis: current status and recommendations in Germany. Nervenarzt 90(12):1245–1253$$v90$$y2019
000874452 999C5 $$1MT Mailand$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-016-8263-4$$p1035 -$$tJ Neurol$$uMailand MT, Frederiksen JL (2017) Vaccines and multiple sclerosis: a systematic review. J Neurol 264(6):1035–1050$$v264$$y2017
000874452 999C5 $$1A Hapfelmeier$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000008012$$pe908 -$$tNeurology$$uHapfelmeier A, Gasperi C, Donnachie E, Hemmer B (2019) A large case-control study on vaccination as risk factor for multiple sclerosis. Neurology 93(9):e908–e916$$v93$$y2019
000874452 999C5 $$2Crossref$$uAAN. Practice guideline update: vaccine-preventable infections and immunization in multiple sclerosis. https://www.aan.com/Guidelines/Home/GetGuidelineContent/975. Accessed 28 Nov 2019
000874452 999C5 $$2Crossref$$uEMA. MabThera—product information. https://www.ema.europa.eu/en/documents/product-information/mabthera-epar-product-information_en.pdf. Accessed 29 Nov 2019
000874452 999C5 $$1M Loebermann$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrneurol.2012.8$$p143 -$$tNat Rev Neurol$$uLoebermann M, Winkelmann A, Hartung HP, Hengel H, Reisinger EC, Zettl UK (2012) Vaccination against infection in patients with multiple sclerosis. Nat Rev Neurol 8:143–151$$v8$$y2012
000874452 999C5 $$2Crossref$$uEMA. Updated recommendations to minimise the risk of the rare brain infection PML with Tecfidera. https://www.ema.europa.eu/en/news/updated-recommendations-minimise-risk-rare-brain-infection-pml-tecfidera. Accessed 28 Nov 2019
000874452 999C5 $$1LZ Ryerson$$2Crossref$$uRyerson LZ, Foley J, Chang I, Kister I, Cutter G, Metzger RR, Goldberg JD, Li X, Riddle E, Smirnakis K, Kasliwal R, Ren Z, Hotermans C, Ho PR, Campbell N (2019) Risk of natalizumab-associated PML in patients with MS is reduced with extended interval dosing. Neurology 93(15):e1452–e1462$$y2019
000874452 999C5 $$1EM Mowry$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000008358$$p735 -$$tNeurology$$uMowry EM, Bourdette D (2019) Natalizumab wearing-off symptoms: patients with MS on extended interval dosing may not “mind the gap”. Neurology 93(17):735–736$$v93$$y2019
000874452 999C5 $$2Crossref$$uBiogen. A study to evaluate efficacy, safety, and tolerability of 6-week extended interval dosing of natalizumab (BG00002) in participants with relapsing-remitting multiple sclerosis (RRMS) switching from treatment with 4-week natalizumab standard interval dosing (SID) in relation to continued SID treatment.https://clinicaltrials.gov/ct2/show/NCT03689972. Accessed 28 Nov 2019