001     874452
005     20250813093402.0
024 7 _ |2 doi
|a 10.1007/s00415-019-09690-6
024 7 _ |2 ISSN
|a 0012-1037
024 7 _ |2 ISSN
|a 0340-5354
024 7 _ |2 ISSN
|a 0939-1517
024 7 _ |2 ISSN
|a 1432-1459
024 7 _ |2 ISSN
|a 1619-800X
024 7 _ |2 Handle
|a 2128/28160
024 7 _ |2 altmetric
|a altmetric:75712693
024 7 _ |2 pmid
|a 32036423
024 7 _ |2 WOS
|a WOS:000515966700001
037 _ _ |a FZJ-2020-01453
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Schweitzer, F.
|b 0
245 _ _ |a Effects of disease-modifying therapy on peripheral leukocytes in patients with multiple sclerosis
260 _ _ |a Berlin
|b Springer85301
|c 2021
264 _ 1 |2 Crossref
|3 online
|b Springer Science and Business Media LLC
|c 2020-02-08
264 _ 1 |2 Crossref
|3 print
|b Springer Science and Business Media LLC
|c 2021-07-01
264 _ 1 |2 Crossref
|3 print
|b Springer Science and Business Media LLC
|c 2021-07-01
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1635842954_7870
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Modern disease-modifying therapies (DMTs) in multiple sclerosis (MS) have variable modes of action and selectively suppress or modulate the immune system. In this review, we summarize the predicted and intended as well as unwanted adverse effects on leukocytes in peripheral blood as a result of treatment with DMTs for MS. We link changes in laboratory tests to the possible therapeutic risks that include secondary autoimmunity, infections, and impaired response to vaccinations. Profound knowledge of the intended effects on leukocyte counts, in particular lymphocytes, explained by the mode of action, and adverse effects which may require additional laboratory and clinical vigilance or even drug discontinuation, is needed when prescribing DMTs to treat patients with MS.
536 _ _ |0 G:(DE-HGF)POF4-5251
|a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|c POF4-525
|f POF IV
|x 0
542 _ _ |2 Crossref
|i 2020-02-08
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |2 Crossref
|i 2020-02-08
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Laurent, S.
|b 1
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, G. R.
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Barnett, Michael H.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Hartung, H. P.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Warnke, C.
|b 5
|e Corresponding author
773 1 8 |2 Crossref
|3 journal-article
|a 10.1007/s00415-019-09690-6
|b Springer Science and Business Media LLC
|d 2020-02-08
|n 7
|p 2379-2389
|t Journal of Neurology
|v 268
|x 0340-5354
|y 2020
773 _ _ |0 PERI:(DE-600)1421299-7
|a 10.1007/s00415-019-09690-6
|n 7
|p 2379-2389
|t Journal of neurology
|v 268
|x 0340-5354
|y 2021
856 4 _ |u https://juser.fz-juelich.de/record/874452/files/Schweitzer2021_Article_EffectsOfDisease-modifyingTher.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:874452
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131720
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5251
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J NEUROL : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |1 JH Noseworthy
|2 Crossref
|9 -- missing cx lookup --
|a 10.1056/NEJM200009283431307
|p 938 -
|t N Engl J Med
|u Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343(13):938–952
|v 343
|y 2000
999 C 5 |1 AJ Thompson
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/S0140-6736(18)30481-1
|p 1622 -
|t Lancet
|u Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391(10130):1622–1636
|v 391
|y 2018
999 C 5 |1 M Farjam
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.jns.2015.09.346
|p 22 -
|t J Neurol Sci
|u Farjam M, Zhang GX, Ciric B, Rostami A (2015) Emerging immunopharmacological targets in multiple sclerosis. J Neurol Sci 358(1–2):22–30
|v 358
|y 2015
999 C 5 |1 K Blauth
|2 Crossref
|9 -- missing cx lookup --
|a 10.3389/fimmu.2015.00565
|p 565 -
|t Front Immunol
|u Blauth K, Owens GP, Bennett JL (2015) The ins and outs of B cells in multiple sclerosis. Front Immunol 6:565
|v 6
|y 2015
999 C 5 |1 CA Dendrou
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nri3871
|p 545 -
|t Nat Rev Immunol
|u Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558
|v 15
|y 2015
999 C 5 |1 S Saleem
|2 Crossref
|u Saleem S, Anwar A, Fayyaz M, Anwer F, Anwar F (2019) An overview of therapeutic options in relapsing-remitting multiple sclerosis. Cureus 11(7):e5246
|y 2019
999 C 5 |2 Crossref
|u EMA. Mayzent siponimod—Summary of opinion (initial authorisation). https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-mayzent_en.pdf. Accessed Nov 2019
999 C 5 |1 N Garg
|2 Crossref
|9 -- missing cx lookup --
|a 10.1002/brb3.362
|p e00362 -
|t Brain Behav
|u Garg N, Smith TW (2015) An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav 5(9):e00362
|v 5
|y 2015
999 C 5 |1 A Marciniak
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.bmcl.2018.10.042
|p 3585 -
|t Bioorg Med Chem Lett
|u Marciniak A, Camp SM, Garcia JGN, Polt R (2018) An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg Med Chem Lett 28(23–24):3585–3591
|v 28
|y 2018
999 C 5 |1 J Avasarala
|2 Crossref
|9 -- missing cx lookup --
|a 10.1002/jcph.945
|p 1415 -
|t J Clin Pharmacol
|u Avasarala J, Jain S, Urrea-Mendoza E (2017) Approach to fingolimod-induced lymphopenia in multiple sclerosis patients: do we have a roadmap? J Clin Pharmacol 57(11):1415–1418
|v 57
|y 2017
999 C 5 |1 G Comi
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.msard.2019.01.038
|p 168 -
|t Mult Scler Relat Disord
|u Comi G, Cook S, Giovannoni G, Rieckmann P, Sorensen PS, Vermersch P, Galazka A, Nolting A, Hicking C, Dangond F (2019) Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult Scler Relat Disord 29:168–174
|v 29
|y 2019
999 C 5 |1 G Francis
|2 Crossref
|9 -- missing cx lookup --
|a 10.1177/1352458513500551
|p 471 -
|t Mult Scler
|u Francis G, Kappos L, O’Connor P, Collins W, Tang D, Mercier F, Cohen JA (2014) Temporal profile of lymphocyte counts and relationship with infections with fingolimod therapy. Mult Scler 20(4):471–480
|v 20
|y 2014
999 C 5 |1 D Focosi
|2 Crossref
|9 -- missing cx lookup --
|a 10.1002/rmv.2077
|p e2077 -
|t Rev Med Virol
|u Focosi D, Tuccori M, Maggi F (2019) Progressive multifocal leukoencephalopathy and anti-CD20 monoclonal antibodies: what do we know after 20 years of rituximab. Rev Med Virol 29:e2077
|v 29
|y 2019
999 C 5 |2 Crossref
|u EMA. Tysabri—EPAR—product information. https://www.ema.europa.eu/en/documents/product-information/tysabri-epar-product-information_en.pdf. Accessed 28 Nov 2019
999 C 5 |2 Crossref
|u HHS. Common Terminology criteria for adverse events (CTCAE) 5.0. https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. Accessed 5 Dec 2019
999 C 5 |1 F Trepel
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/BF01468720
|p 511 -
|t Klin Wochenschr
|u Trepel F (1974) Number and distribution of lymphocytes in man. A critical analysis. Klin Wochenschr 52(11):511–515
|v 52
|y 1974
999 C 5 |1 J Westermann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1111/j.1365-3083.1990.tb02775.x
|p 327 -
|t Scand J Immunol
|u Westermann J, Schwinzer R, Jecker P, Pabst R (1990) Lymphocyte subsets in the blood. The influence of splenectomy, splenic autotransplantation, ageing, and the site of blood sampling on the number of B, T, CD4+, and CD8+ lymphocytes in the rat. Scand J Immunol 31(3):327–334
|v 31
|y 1990
999 C 5 |2 Crossref
|u FDA. Lemtrada label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103948s5158lbl.pdf. Accessed 9 Dec 2019
999 C 5 |2 Crossref
|u EMA. Lemtrada—product information. https://www.ema.europa.eu/en/documents/referral/lemtrada-article-20-procedure-product-information_en.pdf. Accessed 9 Dec 2019
999 C 5 |1 JA Cohen
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/S0140-6736(12)61769-3
|p 1819 -
|t Lancet
|u Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, Havrdova E, Selmaj KW, Weiner HL, Fisher E, Brinar VV, Giovannoni G, Stojanovic M, Ertik BI, Lake SL, Margolin DH, Panzara MA, Compston DA, Investigators C-MI (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380(9856):1819–1828
|v 380
|y 2012
999 C 5 |1 E Havrdova
|2 Crossref
|9 -- missing cx lookup --
|a 10.1212/WNL.0000000000004313
|p 1107 -
|t Neurology
|u Havrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G, Schippling S, Selmaj KW, Traboulsee A, Compston DAS, Margolin DH, Thangavelu K, Rodriguez CE, Jody D, Hogan RJ, Xenopoulos P, Panzara MA, Coles AJ, Care-Ms I, Investigators C (2017) Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 89(11):1107–1116
|v 89
|y 2017
999 C 5 |1 AG Vakrakou
|2 Crossref
|9 -- missing cx lookup --
|a 10.1186/s12883-018-1183-4
|p 178 -
|t BMC Neurol
|u Vakrakou AG, Tzanetakos D, Valsami S, Grigoriou E, Psarra K, Tzartos J, Anagnostouli M, Andreadou E, Evangelopoulos ME, Koutsis G, Chrysovitsanou C, Gialafos E, Dimitrakopoulos A, Stefanis L, Kilidireas C (2018) A case of Alemtuzumab-induced neutropenia in multiple sclerosis in association with the expansion of large granular lymphocytes. BMC Neurol 18(1):178
|v 18
|y 2018
999 C 5 |1 Y Hu
|2 Crossref
|9 -- missing cx lookup --
|a 10.1111/j.1365-2567.2009.03115.x
|p 260 -
|t Immunology
|u Hu Y, Turner MJ, Shields J, Gale MS, Hutto E, Roberts BL, Siders WM, Kaplan JM (2009) Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 128(2):260–270
|v 128
|y 2009
999 C 5 |1 S von Kutzleben
|2 Crossref
|9 -- missing cx lookup --
|a 10.1111/imm.12696
|p 444 -
|t Immunology
|u von Kutzleben S, Pryce G, Giovannoni G, Baker D (2017) Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. Immunology 150(4):444–455
|v 150
|y 2017
999 C 5 |1 T Ruck
|2 Crossref
|9 -- missing cx lookup --
|a 10.1212/WNL.0000000000006648
|p e2233 -
|t Neurology
|u Ruck T, Pfeuffer S, Schulte-Mecklenbeck A, Gross CC, Lindner M, Metze D, Ehrchen J, Sondermann W, Pul R, Kleinschnitz C, Wiendl H, Meuth SG, Klotz L (2018) Vitiligo after alemtuzumab treatment: secondary autoimmunity is not all about B cells. Neurology 91(24):e2233–e2237
|v 91
|y 2018
999 C 5 |1 J Zimmermann
|2 Crossref
|9 -- missing cx lookup --
|a 10.3389/fneur.2017.00569
|p 569 -
|t Front Neurol
|u Zimmermann J, Buhl T, Muller M (2017) Alopecia universalis following alemtuzumab treatment in multiple sclerosis: a barely recognized manifestation of secondary autoimmunity—report of a case and review of the literature. Front Neurol 8:569
|v 8
|y 2017
999 C 5 |2 Crossref
|u EMA. Mavenclad—assessment report. https://www.ema.europa.eu/en/documents/assessment-report/mavenclad-epar-public-assessment-report_en.pdf. Accessed 29 Nov 2019
999 C 5 |1 B Ceronie
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s00415-018-8830-y
|p 1199 -
|t J Neurol
|u Ceronie B, Jacobs BM, Baker D, Dubuisson N, Mao Z, Ammoscato F, Lock H, Longhurst HJ, Giovannoni G, Schmierer K (2018) Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J Neurol 265(5):1199–1209
|v 265
|y 2018
999 C 5 |1 D Baker
|2 Crossref
|9 -- missing cx lookup --
|a 10.1212/NXI.0000000000000360
|p e360 -
|t Neurol Neuroimmunol Neuroinflamm
|u Baker D, Herrod SS, Alvarez-Gonzalez C, Zalewski L, Albor C, Schmierer K (2017) Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol Neuroimmunol Neuroinflamm 4(4):e360
|v 4
|y 2017
999 C 5 |1 RM Savic
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s40262-017-0516-6
|p 1245 -
|t Clin Pharmacokinet
|u Savic RM, Novakovic AM, Ekblom M, Munafo A, Karlsson MO (2017) Population pharmacokinetics of cladribine in patients with multiple sclerosis. Clin Pharmacokinet 56(10):1245–1253
|v 56
|y 2017
999 C 5 |1 D Baker
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.msard.2019.02.018
|p 176 -
|t Mult Scler Relat Disord
|u Baker D, Pryce G, Herrod SS, Schmierer K (2019) Potential mechanisms of action related to the efficacy and safety of cladribine. Mult Scler Relat Disord 30:176–186
|v 30
|y 2019
999 C 5 |1 O Stuve
|2 Crossref
|9 -- missing cx lookup --
|a 10.1177/1756286419854986
|p 175628641985498 -
|t Ther Adv Neurol Disord
|u Stuve O, Soelberg Soerensen P, Leist T, Giovannoni G, Hyvert Y, Damian D, Dangond F, Boschert U (2019) Effects of cladribine tablets on lymphocyte subsets in patients with multiple sclerosis: an extended analysis of surface markers. Ther Adv Neurol Disord 12:1756286419854986
|v 12
|y 2019
999 C 5 |1 J Bruck
|2 Crossref
|9 -- missing cx lookup --
|a 10.1111/exd.13548
|p 611 -
|t Exp Dermatol
|u Bruck J, Dringen R, Amasuno A, Pau-Charles I, Ghoreschi K (2018) A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis. Exp Dermatol 27(6):611–624
|v 27
|y 2018
999 C 5 |1 AK Herrmann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.freeradbiomed.2019.07.005
|p 338 -
|t Free Radic Biol Med
|u Herrmann AK, Wullner V, Moos S, Graf J, Chen J, Kieseier B, Kurschus FC, Albrecht P, Vangheluwe P, Methner A (2019) Dimethyl fumarate alters intracellular Ca(2+) handling in immune cells by redox-mediated pleiotropic effects. Free Radic Biol Med 141:338–347
|v 141
|y 2019
999 C 5 |1 RJ Fox
|2 Crossref
|9 -- missing cx lookup --
|a 10.1212/CPJ.0000000000000238
|p 220 -
|t Neurol Clin Pract
|u Fox RJ, Chan A, Gold R, Phillips JT, Selmaj K, Chang I, Novas M, Rana J, Marantz JL (2016) Characterizing absolute lymphocyte count profiles in dimethyl fumarate-treated patients with MS: patient management considerations. Neurol Clin Pract 6(3):220–229
|v 6
|y 2016
999 C 5 |1 EE Longbrake
|2 Crossref
|u Longbrake EE, Naismith RT, Parks BJ, Wu GF, Cross AH (2015) Dimethyl fumarate-associated lymphopenia: risk factors and clinical significance. Mult Scler J Exp Transl Clin 1:2055217315596994
|y 2015
999 C 5 |1 EE Longbrake
|2 Crossref
|9 -- missing cx lookup --
|a 10.1177/1352458514559299
|p 796 -
|t Mult Scler
|u Longbrake EE, Cross AH (2015) Dimethyl fumarate associated lymphopenia in clinical practice. Mult Scler 21(6):796–797
|v 21
|y 2015
999 C 5 |1 FS Morales
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s00415-019-09557-w
|p 125 -
|t J Neurol
|u Morales FS, Koralnik IJ, Gautam S, Samaan S, Sloane JA (2020) Risk factors for lymphopenia in patients with relapsing-remitting multiple sclerosis treated with dimethyl fumarate. J Neurol 267(1):125–131
|v 267
|y 2020
999 C 5 |2 Crossref
|u FDA. Tecifidera label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204063lbl.pdf. Accessed 9 Dec 2019
999 C 5 |1 V Brinkmann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1111/j.1476-5381.2009.00451.x
|p 1173 -
|t Br J Pharmacol
|u Brinkmann V (2009) FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158(5):1173–1182
|v 158
|y 2009
999 C 5 |1 L Kappos
|2 Crossref
|9 -- missing cx lookup --
|a 10.1056/NEJMoa0909494
|p 387 -
|t N Engl J Med
|u Kappos L, Radue EW, O‘Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P, Group FS (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5):387–401
|v 362
|y 2010
999 C 5 |1 G Comi
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s40265-017-0814-1
|p 1755 -
|t Drugs
|u Comi G, Hartung HP, Bakshi R, Williams IM, Wiendl H (2017) Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs 77:1755–1768
|v 77
|y 2017
999 C 5 |2 Crossref
|u FDA. Gilenya (fingolimod) label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022527s008lbl.pdf. Accessed 9 Dec 2019
999 C 5 |2 Crossref
|u EMA. Gilenya—product information. https://www.ema.europa.eu/en/documents/product-information/gilenya-epar-product-information_en.pdf. Accessed 28 Nov 2019
999 C 5 |2 Crossref
|u CHMP. CHMP summary of positive opinion for Mayzent. https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-mayzent_en.pdf. Accessed 9 Dec 2019
999 C 5 |2 Crossref
|u https://www.tga.gov.au/apm-summary/mayzent
999 C 5 |2 Crossref
|u FDA. Mayzent (siponimod) label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209884s000lbl.pdf. Accessed 9 Dec 2019
999 C 5 |1 L Kappos
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/S0140-6736(18)30475-6
|p 1263 -
|t Lancet
|u Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, Vermersch P, Arnold DL, Arnould S, Scherz T, Wolf C, Wallstrom E, Dahlke F, Investigators EC (2018) Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391(10127):1263–1273
|v 391
|y 2018
999 C 5 |1 CH Polman
|2 Crossref
|9 -- missing cx lookup --
|a 10.1056/NEJMoa044397
|p 899 -
|t N Engl J Med
|u Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, Investigators A (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354(9):899–910
|v 354
|y 2006
999 C 5 |1 C Saure
|2 Crossref
|9 -- missing cx lookup --
|a 10.1001/archneurol.2011.238
|p 1428 -
|t Arch Neurol
|u Saure C, Warnke C, Zohren F, Schroeder T, Bruns I, Cadeddu RP, Weigelt C, Fischer U, Kobbe G, Hartung HP, Adams O, Kieseier BC, Haas R (2011) Natalizumab and impedance of the homing of CD34+ hematopoietic progenitors. Arch Neurol 68(11):1428–1431
|v 68
|y 2011
999 C 5 |1 C Warnke
|2 Crossref
|9 -- missing cx lookup --
|a 10.1177/1352458510385834
|p 151 -
|t Mult Scler
|u Warnke C, Smolianov V, Dehmel T, Andree M, Hengel H, Zohren F, Arendt G, Wiendl H, Haas R, Hartung HP, Adams O, Kieseier BC (2011) CD34+ progenitor cells mobilized by natalizumab are not a relevant reservoir for JC virus. Mult Scler 17(2):151–156
|v 17
|y 2011
999 C 5 |1 T Koudriavtseva
|2 Crossref
|9 -- missing cx lookup --
|a 10.1111/cei.12261
|p 320 -
|t Clin Exp Immunol
|u Koudriavtseva T, Sbardella E, Trento E, Bordignon V, D’Agosto G, Cordiali-Fei P (2014) Long-term follow-up of peripheral lymphocyte subsets in a cohort of multiple sclerosis patients treated with natalizumab. Clin Exp Immunol 176(3):320–326
|v 176
|y 2014
999 C 5 |1 O Stuve
|2 Crossref
|9 -- missing cx lookup --
|a 10.1001/archneur.63.10.1383
|p 1383 -
|t Arch Neurol
|u Stuve O, Marra CM, Bar-Or A, Niino M, Cravens PD, Cepok S, Frohman EM, Phillips JT, Arendt G, Jerome KR, Cook L, Grand’Maison F, Hemmer B, Monson NL, Racke MK (2006) Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol 63(10):1383–1387
|v 63
|y 2006
999 C 5 |1 PS Rommer
|2 Crossref
|9 -- missing cx lookup --
|a 10.3389/fimmu.2019.01564
|p 1564 -
|t Front Immunol
|u Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, Illes Z, Warnke C, Laurent S, Weber MS, Zhang Y, Stuve O (2019) Immunological aspects of approved MS therapeutics. Front Immunol 10:1564
|v 10
|y 2019
999 C 5 |1 PS Sorensen
|2 Crossref
|9 -- missing cx lookup --
|a 10.1177/1756285615601933
|p 44 -
|t Ther Adv Neurol Disord
|u Sorensen PS, Blinkenberg M (2016) The potential role for ocrelizumab in the treatment of multiple sclerosis: current evidence and future prospects. Ther Adv Neurol Disord 9(1):44–52
|v 9
|y 2016
999 C 5 |1 S Gingele
|2 Crossref
|9 -- missing cx lookup --
|a 10.3390/cells8010012
|p 12 -
|t Cells
|u Gingele S, Jacobus TL, Konen FF, Hummert MW, Suhs KW, Schwenkenbecher P, Ahlbrecht J, Mohn N, Muschen LH, Bonig L, Alvermann S, Schmidt RE, Stangel M, Jacobs R, Skripuletz T (2018) Ocrelizumab depletes CD20(+) T cells in multiple sclerosis patients. Cells 8(1):12
|v 8
|y 2018
999 C 5 |1 SL Hauser
|2 Crossref
|9 -- missing cx lookup --
|a 10.1056/NEJMoa1601277
|p 221 -
|t N Engl J Med
|u Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L, Opera I, Investigators OIC (2017) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 376(3):221–234
|v 376
|y 2017
999 C 5 |2 Crossref
|u EMA. Ocrevus—EPAR—product information. https://www.ema.europa.eu/en/documents/product-information/ocrevus-epar-product-information_en.pdf. Accessed 9 Dec 2019
999 C 5 |1 K Hawker
|2 Crossref
|9 -- missing cx lookup --
|a 10.1002/ana.21867
|p 460 -
|t Ann Neurol
|u Hawker K, O’Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, Hauser S, Waubant E, Vollmer T, Panitch H, Zhang J, Chin P, Smith CH, Group OT (2009) Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 66(4):460–471
|v 66
|y 2009
999 C 5 |1 SL Hauser
|2 Crossref
|9 -- missing cx lookup --
|a 10.1056/NEJMoa0706383
|p 676 -
|t N Engl J Med
|u Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH, Group HT (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688
|v 358
|y 2008
999 C 5 |1 A Bar-Or
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s40265-014-0212-x
|p 659 -
|t Drugs
|u Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H (2014) Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74(6):659–674
|v 74
|y 2014
999 C 5 |2 Crossref
|u EMA. Aubagio—EPAR—product information. https://www.ema.europa.eu/en/documents/product-information/aubagio-epar-product-information_en.pdf. Accessed 9 Dec 2019
999 C 5 |1 G Comi
|2 Crossref
|u Comi G, Miller AE, Benamor M, Truffinet P, Poole EM, Freedman MS (2019) Characterizing lymphocyte counts and infection rates with long-term teriflunomide treatment: pooled analysis of clinical trials. Mult Scler 7:1352458519851981
|y 2019
999 C 5 |2 Crossref
|u EMA. Tecfidera—product information. https://www.ema.europa.eu/en/documents/product-information/tecfidera-epar-product-information_en.pdf. Accessed 29 Nov 2019
999 C 5 |1 DJ Epstein
|2 Crossref
|9 -- missing cx lookup --
|a 10.1093/ofid/ofy174
|p ofy174 -
|t Open Forum Infect Dis
|u Epstein DJ, Dunn J, Deresinski S (2018) Infectious complications of multiple sclerosis therapies: implications for screening, prophylaxis, and management. Open Forum Infect Dis 5(8):ofy174
|v 5
|y 2018
999 C 5 |1 A Winkelmann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nrneurol.2016.21
|p 217 -
|t Nat Rev Neurol
|u Winkelmann A, Loebermann M, Reisinger EC, Hartung HP, Zettl UK (2016) Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12(4):217–233
|v 12
|y 2016
999 C 5 |1 H Seto
|2 Crossref
|9 -- missing cx lookup --
|a 10.2169/internalmedicine.55.7255
|p 3383 -
|t Intern Med
|u Seto H, Nishimura M, Minamiji K, Miyoshi S, Mori H, Kanazawa K, Yasuda H (2016) Disseminated cryptococcosis in a 63-year-old patient with multiple sclerosis treated with fingolimod. Intern Med 55(22):3383–3386
|v 55
|y 2016
999 C 5 |1 MR Ciardi
|2 Crossref
|9 -- missing cx lookup --
|a 10.1093/ofid/ofy356
|p ofy356 -
|t Open Forum Infect Dis
|u Ciardi MR, Iannetta M, Zingaropoli MA, Salpini R, Aragri M, Annecca R, Pontecorvo S, Altieri M, Russo G, Svicher V, Mastroianni CM, Vullo V (2019) Reactivation of hepatitis B virus with immune-escape mutations after ocrelizumab treatment for multiple sclerosis. Open Forum Infect Dis 6(1):ofy356
|v 6
|y 2019
999 C 5 |2 Crossref
|u KKNMS. Qualitätshandbuch MS/NMOSD 2019. https://www.kompetenznetz-multiplesklerose.de/fachinformationen/qualitaetshandbuch/. Accessed 28 Nov 2019
999 C 5 |1 MIR Dudek
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s00415-019-09391-0
|p 2322 -
|t J Neurol
|u Dudek MIR, Thies K, Kammenhuber S, Bosel J, Rosche J (2019) HSV-2-encephalitis in a patient with multiple sclerosis treated with ocrelizumab. J Neurol 266(9):2322–2323
|v 266
|y 2019
999 C 5 |1 LJW Canham
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.msard.2018.05.014
|p 38 -
|t Mult Scler Relat Disord
|u Canham LJW, Manara A, Fawcett J, Rolinski M, Mortimer A, Inglis KEA, Cottrell DA (2018) Mortality from Listeria monocytogenes meningoencephalitis following escalation to alemtuzumab therapy for relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 24:38–41
|v 24
|y 2018
999 C 5 |1 T Holmoy
|2 Crossref
|9 -- missing cx lookup --
|a 10.1186/s12883-017-0848-8
|p 65 -
|t BMC Neurol
|u Holmoy T, von der Lippe H, Leegaard TM (2017) Listeria monocytogenes infection associated with alemtuzumab—a case for better preventive strategies. BMC Neurol 17(1):65
|v 17
|y 2017
999 C 5 |1 D Rau
|2 Crossref
|9 -- missing cx lookup --
|a 10.3390/ijms160714669
|p 14669 -
|t Int J Mol Sci
|u Rau D, Lang M, Harth A, Naumann M, Weber F, Tumani H, Bayas A (2015) Listeria meningitis complicating alemtuzumab treatment in multiple sclerosis-report of two cases. Int J Mol Sci 16(7):14669–14676
|v 16
|y 2015
999 C 5 |1 S Ruggieri
|2 Crossref
|9 -- missing cx lookup --
|a 10.1001/jamaneurol.2018.0368
|p 762 -
|t JAMA Neurol
|u Ruggieri S, Logoteta A, Martini G, Bozzao A, De Giglio L (2018) Listeria monocytogenes-induced rhombencephalitis in a patient with multiple sclerosis treated with dimethyl fumarate. JAMA Neurol 75(6):762–763
|v 75
|y 2018
999 C 5 |1 EO Major
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/S1474-4422(18)30040-1
|p 467 -
|t Lancet Neurol
|u Major EO, Yousry TA, Clifford DB (2018) Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: a decade of lessons learned. Lancet Neurol 17(5):467–480
|v 17
|y 2018
999 C 5 |1 S Vukusic
|2 Crossref
|9 -- missing cx lookup --
|a 10.1001/jamaneurol.2019.2670
|p e192670 -
|t JAMA Neurol
|u Vukusic S, Rollot F, Casey R, Pique J, Marignier R, Mathey G, Edan G, Brassat D, Ruet A, De Seze J, Maillart E, Zephir H, Labauge P, Derache N, Lebrun-Frenay C, Moreau T, Wiertlewski S, Berger E, Moisset X, Rico-Lamy A, Stankoff B, Bensa C, Thouvenot E, Heinzlef O, Al-Khedr A, Bourre B, Vaillant M, Cabre P, Montcuquet A, Wahab A, Camdessanche JP, Tourbah A, Guennoc AM, Hankiewicz K, Patry I, Nifle C, Maubeuge N, Labeyrie C, Vermersch P, Laplaud DA, Investigators O (2019) Progressive multifocal leukoencephalopathy incidence and risk stratification among natalizumab users in France. JAMA Neurol e192670. https://doi.org/10.1001/jamaneurol.2019.2670
|v 2019
|y 2019
999 C 5 |1 D Pavlovic
|2 Crossref
|9 -- missing cx lookup --
|a 10.1016/j.imbio.2018.01.002
|p 508 -
|t Immunobiology
|u Pavlovic D, Patel MA, Patera AC, Peterson I (2018) Progressive multifocal leukoencephalopathy C. T cell deficiencies as a common risk factor for drug associated progressive multifocal leukoencephalopathy. Immunobiology 223(6–7):508–517
|v 223
|y 2018
999 C 5 |1 SA Misbah
|2 Crossref
|9 -- missing cx lookup --
|a 10.1111/cei.12948
|p 342 -
|t Clin Exp Immunol
|u Misbah SA (2017) Progressive multi-focal leucoencephalopathy—driven from rarity to clinical mainstream by iatrogenic immunodeficiency. Clin Exp Immunol 188(3):342–352
|v 188
|y 2017
999 C 5 |1 JR Berger
|2 Crossref
|9 -- missing cx lookup --
|a 10.1212/WNL.0000000000005529
|p e1815 -
|t Neurology
|u Berger JR, Cree BA, Greenberg B, Hemmer B, Ward BJ, Dong VM, Merschhemke M (2018) Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology 90(20):e1815–e1821
|v 90
|y 2018
999 C 5 |1 J Nakahara
|2 Crossref
|9 -- missing cx lookup --
|a 10.1212/NXI.0000000000000559
|p e559 -
|t Neurol Neuroimmunol Neuroinflamm
|u Nakahara J, Tomaske L, Kume K, Takata T, Kamada M, Deguchi K, Kufukihara K, Schneider R, Gold R, Ayzenberg I (2019) Three cases of non-carryover fingolimod-PML: is the risk in Japan increased? Neurol Neuroimmunol Neuroinflamm 6(3):e559
|v 6
|y 2019
999 C 5 |1 M Briner
|2 Crossref
|9 -- missing cx lookup --
|a 10.1177/1756286419843450
|p 175628641984345 -
|t Ther Adv Neurol Disord
|u Briner M, Bagnoud M, Miclea A, Friedli C, Diem L, Chan A, Hoepner R, Salmen A (2019) Time course of lymphocyte repopulation after dimethyl fumarate-induced grade 3 lymphopenia: contribution of patient age. Ther Adv Neurol Disord 12:1756286419843450
|v 12
|y 2019
999 C 5 |1 LE Baldassari
|2 Crossref
|u Baldassari LE, Feng J, Macaron G, Planchon SM, Alshehri E, Moss BP, Ontaneda D, Willis MA (2019) Tuberculosis screening in multiple sclerosis: effect of disease-modifying therapies and lymphopenia on the prevalence of indeterminate TB screening results in the clinical setting. Mult Scler J Exp Transl Clin 5(3):2055217319875467
|y 2019
999 C 5 |1 S Bittner
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s00115-019-0760-0
|p 1245 -
|t Nervenarzt
|u Bittner S, Engel S, Lange C, Weber MS, Haghikia A, Luessi F, Korn T, Klotz L, Bayas A, Paul F, Heesen C, Stangel M, Wildemann B, Bergh FT, Tackenberg B, Trebst C, Warnke C, Linker R, Kerschensteiner M, Zettl U, Tumani H, Bruck W, Meuth SG, Kumpfel T, Hemmer B, Wiendl H, Gold R, Zipp F (2019) Diagnostics and treatment of tuberculosis under immunotherapy for multiple sclerosis: current status and recommendations in Germany. Nervenarzt 90(12):1245–1253
|v 90
|y 2019
999 C 5 |1 MT Mailand
|2 Crossref
|9 -- missing cx lookup --
|a 10.1007/s00415-016-8263-4
|p 1035 -
|t J Neurol
|u Mailand MT, Frederiksen JL (2017) Vaccines and multiple sclerosis: a systematic review. J Neurol 264(6):1035–1050
|v 264
|y 2017
999 C 5 |1 A Hapfelmeier
|2 Crossref
|9 -- missing cx lookup --
|a 10.1212/WNL.0000000000008012
|p e908 -
|t Neurology
|u Hapfelmeier A, Gasperi C, Donnachie E, Hemmer B (2019) A large case-control study on vaccination as risk factor for multiple sclerosis. Neurology 93(9):e908–e916
|v 93
|y 2019
999 C 5 |2 Crossref
|u AAN. Practice guideline update: vaccine-preventable infections and immunization in multiple sclerosis. https://www.aan.com/Guidelines/Home/GetGuidelineContent/975. Accessed 28 Nov 2019
999 C 5 |2 Crossref
|u EMA. MabThera—product information. https://www.ema.europa.eu/en/documents/product-information/mabthera-epar-product-information_en.pdf. Accessed 29 Nov 2019
999 C 5 |1 M Loebermann
|2 Crossref
|9 -- missing cx lookup --
|a 10.1038/nrneurol.2012.8
|p 143 -
|t Nat Rev Neurol
|u Loebermann M, Winkelmann A, Hartung HP, Hengel H, Reisinger EC, Zettl UK (2012) Vaccination against infection in patients with multiple sclerosis. Nat Rev Neurol 8:143–151
|v 8
|y 2012
999 C 5 |2 Crossref
|u EMA. Updated recommendations to minimise the risk of the rare brain infection PML with Tecfidera. https://www.ema.europa.eu/en/news/updated-recommendations-minimise-risk-rare-brain-infection-pml-tecfidera. Accessed 28 Nov 2019
999 C 5 |1 LZ Ryerson
|2 Crossref
|u Ryerson LZ, Foley J, Chang I, Kister I, Cutter G, Metzger RR, Goldberg JD, Li X, Riddle E, Smirnakis K, Kasliwal R, Ren Z, Hotermans C, Ho PR, Campbell N (2019) Risk of natalizumab-associated PML in patients with MS is reduced with extended interval dosing. Neurology 93(15):e1452–e1462
|y 2019
999 C 5 |1 EM Mowry
|2 Crossref
|9 -- missing cx lookup --
|a 10.1212/WNL.0000000000008358
|p 735 -
|t Neurology
|u Mowry EM, Bourdette D (2019) Natalizumab wearing-off symptoms: patients with MS on extended interval dosing may not “mind the gap”. Neurology 93(17):735–736
|v 93
|y 2019
999 C 5 |2 Crossref
|u Biogen. A study to evaluate efficacy, safety, and tolerability of 6-week extended interval dosing of natalizumab (BG00002) in participants with relapsing-remitting multiple sclerosis (RRMS) switching from treatment with 4-week natalizumab standard interval dosing (SID) in relation to continued SID treatment.https://clinicaltrials.gov/ct2/show/NCT03689972. Accessed 28 Nov 2019


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21