000874453 001__ 874453
000874453 005__ 20240708133457.0
000874453 037__ $$aFZJ-2020-01454
000874453 1001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b0$$eCorresponding author$$ufzj
000874453 1112_ $$a7th International Workshop on Plasma Material Interaction Facilities for Fusion Research (PMIF-2019)$$cLa Jolla, California$$d2019-10-22 - 2019-10-25$$wUSA
000874453 245__ $$aInfluence of plasma impurities on the fuel retention in tungsten
000874453 260__ $$c2019
000874453 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1583841559_498
000874453 3367_ $$033$$2EndNote$$aConference Paper
000874453 3367_ $$2BibTeX$$aINPROCEEDINGS
000874453 3367_ $$2DRIVER$$aconferenceObject
000874453 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000874453 3367_ $$2ORCID$$aOTHER
000874453 520__ $$aInfluence of plasma impurities on the fuel retention in tungstenA. Kreter1, D. Nishijima2, R.P. Doerner2, M. Freisinger1, Ch. Linsmeier1, Y. Martynova1, S. Möller1, M. Rasinski1, M. Reinhart1, A. Terra1, Y. Torikai3 and B. Unterberg11Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany2University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417, USA3Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, JapanThe retention of radioactive tritium in the reactor wall is a safety issue and should be kept to a minimum. We investigated the influence of helium, argon, neon and nitrogen as plasma impurities on the deuterium retention in tungsten in the linear plasma devices PSI-2 and PISCES-A. Following mixed plasmas were produced: pure D, D+He, D+Ar, D+Ne, D+N and D+He+Ar, with impurity fractions between 3% and 10%. The exposure conditions were as follows: incident ion flux of ~1021 to 1022 m-2s-1, incident ion fluence of 1×1025 to 11026 m-2, sample temperatures of 500 and 770 K. The incident ion energy was 70 eV, above the tungsten sputtering threshold for argon and nitrogen, but below it for deuterium and helium. For neon, in addition, it was varied between 20 and 70 eV, below and above the tungsten sputtering threshold, respectively. The admixture of helium reduced the deuterium retention by a factor of 3-100, with a stronger reduction of a higher sample temperature. In the D+He+Ar case the retention was similar as for pure D. Argon sputtered the near-surface helium nanobubble layer and thus overrode the effect of helium. The effect of neon is sensitive to the incident ion energy. Addition of nitrogen increased the deuterium retention by a factor of ~10 and ~100 for 500 and 770 K, respectively. In general, the effect of impurities on the deuterium retention appears to be sensitive to the properties of the affected near-surface layer of tungsten. Admixed species, i.e. helium, can form a layer with open porosity, which serves as an additional release channel for deuterium thus decreasing the retention. However, if the process is dominated by sputtering, as for argon, such a layer cannot be formed. The nitrogen enriched layer, in contrast, serves as a desorption barrier for deuterium increasing the retention.
000874453 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000874453 7001_ $$0P:(DE-HGF)0$$aNishijima, D.$$b1
000874453 7001_ $$0P:(DE-HGF)0$$aDoerner, R. P.$$b2
000874453 7001_ $$0P:(DE-Juel1)130010$$aFreisinger, M.$$b3$$ufzj
000874453 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b4$$ufzj
000874453 7001_ $$0P:(DE-Juel1)167463$$aMartynova, Y.$$b5
000874453 7001_ $$0P:(DE-Juel1)139534$$aMöller, S.$$b6$$ufzj
000874453 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b7$$ufzj
000874453 7001_ $$0P:(DE-Juel1)144825$$aReinhart, M.$$b8$$ufzj
000874453 7001_ $$0P:(DE-Juel1)130166$$aTerra, A.$$b9$$ufzj
000874453 7001_ $$0P:(DE-HGF)0$$aTorikai, Y.$$b10
000874453 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b11$$ufzj
000874453 909CO $$ooai:juser.fz-juelich.de:874453$$pVDB
000874453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b0$$kFZJ
000874453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130010$$aForschungszentrum Jülich$$b3$$kFZJ
000874453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b4$$kFZJ
000874453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139534$$aForschungszentrum Jülich$$b6$$kFZJ
000874453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b7$$kFZJ
000874453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144825$$aForschungszentrum Jülich$$b8$$kFZJ
000874453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130166$$aForschungszentrum Jülich$$b9$$kFZJ
000874453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b11$$kFZJ
000874453 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000874453 9141_ $$y2020
000874453 920__ $$lyes
000874453 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000874453 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000874453 980__ $$aabstract
000874453 980__ $$aVDB
000874453 980__ $$aI:(DE-Juel1)IEK-4-20101013
000874453 980__ $$aI:(DE-Juel1)IEK-1-20101013
000874453 980__ $$aUNRESTRICTED
000874453 981__ $$aI:(DE-Juel1)IFN-1-20101013
000874453 981__ $$aI:(DE-Juel1)IMD-2-20101013