001     874483
005     20250701125924.0
024 7 _ |a 10.1016/j.ijhydene.2020.01.082
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a 2128/24794
|2 Handle
024 7 _ |a WOS:000523643400003
|2 WOS
037 _ _ |a FZJ-2020-01462
082 _ _ |a 620
100 1 _ |a Harboe, S.
|0 P:(DE-Juel1)171731
|b 0
|e Corresponding author
245 _ _ |a Manufacturing cost model for planar 5 kWel SOFC stacks at Forschungszentrum Jülich
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1588785160_29434
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A study is performed on the manufacturing costs of planar Jülich Solid Oxide Fuel Cell (SOFC) stacks, based on anode-supported cells (ASC). The manufacturing of two ASC concepts with different design approaches (referred to as standard and light-weight) are evaluated on the basis of stacks that have undergone performance and degradation testing. A bottom-up cost model for 5 kWel is constructed to estimate the costs at production volumes of 1 MWel, 10 MWel and 25 MWel per annum. The direct costs of manufacturing are estimated as 2737–1210 €kWel−1 for the standard design, and 2170–580 €kWel−1 for the light-weight design, depending on production volume. For the evaluated concepts, the material costs are estimated to be dominant over the other factors (at the 25 MWel per annum scale > 65%) which is in accordance with most previous studies. The effect of the different design types on the costs is discussed. The steel components are found to be the most cost-intensive, benefiting the light-weight design. Cost sensitivity analyses to manufacturing parameters, power density and degradation are performed, as well as a theoretical scenarios calculated based on low-cost steel type SS441 replacing the costly Crofer materials and co-sintering replacing sequential sintering. The results are compared to previous studies. Strategies for cost-saving are discussed based on 20 years of experience with stack building and testing in Jülich.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schreiber, A.
|0 P:(DE-Juel1)130483
|b 1
700 1 _ |a Margaritis, N.
|0 P:(DE-Juel1)157695
|b 2
|u fzj
700 1 _ |a Blum, L.
|0 P:(DE-Juel1)129828
|b 3
700 1 _ |a Guillon, O.
|0 P:(DE-Juel1)161591
|b 4
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.ijhydene.2020.01.082
|g Vol. 45, no. 15, p. 8015 - 8030
|0 PERI:(DE-600)1484487-4
|n 15
|p 8015 - 8030
|t International journal of hydrogen energy
|v 45
|y 2020
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/874483/files/J%20of%20hydrogen%20energy%20SOFC%20cost%20Harboe%20Schreiber%20Blum%20Menzler%202020-1.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874483/files/JuelichCostsSOFC_corr_WO_HL.PDF
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/874483/files/J%20of%20hydrogen%20energy%20SOFC%20cost%20Harboe%20Schreiber%20Blum%20Menzler%202020-1.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:874483
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171731
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 2
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)ITE-20250108
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21