000874484 001__ 874484
000874484 005__ 20220930130232.0
000874484 0247_ $$2doi$$a10.1007/s00429-020-02046-1
000874484 0247_ $$2ISSN$$a0340-2061
000874484 0247_ $$2ISSN$$a1432-0568
000874484 0247_ $$2ISSN$$a1863-2653
000874484 0247_ $$2ISSN$$a1863-2661
000874484 0247_ $$2Handle$$a2128/24977
000874484 0247_ $$2altmetric$$aaltmetric:77287450
000874484 0247_ $$2pmid$$apmid:32144496
000874484 0247_ $$2WOS$$aWOS:000537779200006
000874484 037__ $$aFZJ-2020-01463
000874484 082__ $$a610
000874484 1001_ $$0P:(DE-Juel1)170074$$aReuter, Niels$$b0
000874484 245__ $$aCBPtools: a Python package for regional connectivity-based parcellation
000874484 260__ $$aHeidelberg$$bSpringer$$c2020
000874484 3367_ $$2DRIVER$$aarticle
000874484 3367_ $$2DataCite$$aOutput Types/Journal article
000874484 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591204844_925
000874484 3367_ $$2BibTeX$$aARTICLE
000874484 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874484 3367_ $$00$$2EndNote$$aJournal Article
000874484 500__ $$aThis study was supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no. 785907 (HBP SGA2) and Grant Agreement no. 7202070 (HBP SGA1). SG is supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant Agreement GE 2835/1-1.
000874484 520__ $$aRegional connectivity-based parcellation (rCBP) is a widely used procedure for investigating the structural and functional differentiation within a region of interest (ROI) based on its long-range connectivity. No standardized software or guidelines currently exist for applying rCBP, making the method only accessible to those who develop their own tools. As such, there exists a discrepancy between the laboratories applying the procedure each with their own software solutions, making it difficult to compare and interpret the results. Here, we outline an rCBP procedure accompanied by an open source software package called CBPtools. CBPtools is a Python (version 3.5+) package that allows users to run an extensively evaluated rCBP analysis workflow on a given ROI. It currently supports two modalities: resting-state functional connectivity and structural connectivity based on diffusion-weighted imaging, along with support for custom connectivity matrices. Analysis parameters are customizable and the workflow can be scaled to a large number of subjects using a parallel processing environment. Parcellation results with corresponding validity metrics are provided as textual and graphical output. Thus, CBPtools provides a simple plug-and-play, yet customizable way to conduct rCBP analyses. By providing an open-source software we hope to promote reproducible and comparable rCBP analyses and, importantly, make the rCBP procedure readily available. Here, we demonstrate the utility of CBPtools using a voluminous data set on an average compute-cluster infrastructure by performing rCBP on three ROIs prominently featured in parcellation literature.
000874484 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000874484 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000874484 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000874484 588__ $$aDataset connected to CrossRef
000874484 7001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b1
000874484 7001_ $$0P:(DE-Juel1)171719$$aKharabian Masouleh, Shahrzad$$b2
000874484 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b3
000874484 7001_ $$0P:(DE-Juel1)171422$$aLiu, Xiaojin$$b4$$ufzj
000874484 7001_ $$00000-0002-0358-9020$$aKalenscher, Tobias$$b5
000874484 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b6
000874484 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b7$$eCorresponding author
000874484 773__ $$0PERI:(DE-600)2303775-1$$a10.1007/s00429-020-02046-1$$p1261–1275$$tBrain structure & function$$v225$$x1863-2661$$y2020
000874484 8564_ $$uhttps://juser.fz-juelich.de/record/874484/files/Reuter2020_Article_CBPtoolsAPythonPackageForRegio-1.pdf$$yOpenAccess
000874484 8564_ $$uhttps://juser.fz-juelich.de/record/874484/files/Reuter2020_Article_CBPtoolsAPythonPackageForRegio-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874484 8767_ $$92020-02-18$$d2020-03-11$$eHybrid-OA$$jDEAL$$lDEAL: Springer$$pBSAF-D-19-00350R1$$zApproved durch MPDL
000874484 909CO $$ooai:juser.fz-juelich.de:874484$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000874484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170074$$aForschungszentrum Jülich$$b0$$kFZJ
000874484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b1$$kFZJ
000874484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171719$$aForschungszentrum Jülich$$b2$$kFZJ
000874484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b3$$kFZJ
000874484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171422$$aForschungszentrum Jülich$$b4$$kFZJ
000874484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b6$$kFZJ
000874484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b7$$kFZJ
000874484 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000874484 9141_ $$y2020
000874484 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874484 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000874484 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874484 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874484 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000874484 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STRUCT FUNCT : 2017
000874484 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874484 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874484 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874484 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874484 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874484 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874484 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874484 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874484 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874484 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874484 920__ $$lyes
000874484 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000874484 980__ $$ajournal
000874484 980__ $$aVDB
000874484 980__ $$aUNRESTRICTED
000874484 980__ $$aI:(DE-Juel1)INM-7-20090406
000874484 980__ $$aAPC
000874484 9801_ $$aAPC
000874484 9801_ $$aFullTexts