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Abstract

Regional connectivity-based parcellation (rCBP) is a widely used procedure for investigating the structural and functional
differentiation within a region of interest (ROI) based on its long-range connectivity. No standardized software or guidelines
currently exist for applying rCBP, making the method only accessible to those who develop their own tools. As such, there
exists a discrepancy between the laboratories applying the procedure each with their own software solutions, making it dif-
ficult to compare and interpret the results. Here, we outline an rCBP procedure accompanied by an open source software
package called CBPtools. CBPtools is a Python (version 3.5+) package that allows users to run an extensively evaluated rCBP
analysis workflow on a given ROL. It currently supports two modalities: resting-state functional connectivity and structural
connectivity based on diffusion-weighted imaging, along with support for custom connectivity matrices. Analysis parameters
are customizable and the workflow can be scaled to a large number of subjects using a parallel processing environment. Par-
cellation results with corresponding validity metrics are provided as textual and graphical output. Thus, CBPtools provides
a simple plug-and-play, yet customizable way to conduct rCBP analyses. By providing an open-source software we hope to
promote reproducible and comparable rCBP analyses and, importantly, make the rCBP procedure readily available. Here, we
demonstrate the utility of CBPtools using a voluminous data set on an average compute-cluster infrastructure by performing
rCBP on three ROIs prominently featured in parcellation literature.
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Introduction
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A common approach to mapping the human brain through
CBP is to cluster voxels/vertices into parcels. Here, we focus
on regional CBP (rCBP). A clustering algorithm is used
to group voxels/vertices within a given region of interest
(ROI) based on similarity in their connection strengths to a
set of target voxels/vertices, i.e., their connectivity profile.
Voxels clustered together form homogeneous units, i.e., par-
cels, with regard to the measured connectivity marker that
best describes the input data at hand. The parcels are often
spatially consistent, as neighboring voxels usually exhibit
more similar connectivity patterns than those further away.
Thus, the rCBP procedure can map functional or structural
subdivisions/clusters within a particular ROI. rCBP derived
parcels are known to match with histological parcellation
(Bzdok et al. 2013), but they may also provide subdivisions
pertaining to different sources of information not revealed
by cytoarchitectonic mapping alone (Clos et al. 2013). As
each MRI modality yields a different aspect of brain con-
nectivity, TCBP on each modality can yield differing parcel-
lations with different interpretations. Commonly used imag-
ing modalities include, but are not limited to, resting-state
blood oxygen level-dependent (BOLD) time series used to
measure task-independent functional connectivity and diffu-
sion-weighted imaging (DWI)-based probabilistic diffusion
tractography to estimate anatomical fiber connectivity, as
well as meta-analytic connectivity modeling (MACM) as a
measure of task-dependent functional connectivity and co-
activation patterns. Due to the different interpretations that
may result from each modality, a multimodal approach [e.g.,
Genon et al. (2018) and Plachti et al. (2019)] may be used to
compare unimodal parcellations.

Various methods can be employed at different steps
within the rCBP procedure. For instance, unlike whole-
brain parcellations (Schaefer et al. 2018), rCBP focuses
on a particular ROI, hence allowing an in-depth analysis
by uncovering the internal differentiation of a region. Our
approach relies on using static rather than dynamic (Hutch-
ison et al. 2013; Ji et al. 2016) patterns of connectivity.
Moreover, we use a hard cluster assignment employing an
unsupervised machine learning algorithm (k-means, spec-
tral, or agglomerative clustering) as opposed to probabilistic,
graded (Bajada et al. 2017), or boundary mapping (Cohen
et al. 2008) approaches. For a more detailed overview of
the rCBP procedure, we recommend reading Eickhoff et al.
(2015) and Eickhoff et al. (2018).

Despite its popularity, rCBP is challenging and time con-
suming to employ without the necessary tools. As neuro-
science makes a transition toward big data, with prominent
examples such as the Human Connectome Project (HCP)
(Van Essen et al. 2013) and the 1000BRAINS study (Caspers
et al. 2014) having well over 1000 subjects, it becomes an
increasing necessity to add support for high-throughput
computation and parallel processing. Furthermore, the
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numerous options available at each step of the rCBP proce-
dure paired with the absence of uniform guidelines make it
difficult to have comparable results. For example, the choice
of clustering algorithm may influence the clustering results,
with options such as k-means clustering, spectral clustering,
or hierarchical clustering (Hastie et al. 2013; Von Luxburg
2007).

To resolve these issues, we introduce CBPtools, an open-
source distributed workflow for rCBP enclosed in a Python
package. By unifying the methodological choices behind the
procedure into a customizable workflow, we offer a fast, sta-
ble, and reproducible means to parcellate the brain regions.
Furthermore, computational demands highlighted by com-
plex algorithms and large data sets are mitigated by efficient
parallel execution of the procedure. CBPtools offers a com-
mon working ground to effortlessly and efficiently conduct
reproducible and data-driven parcellation analyses.

Materials and methods
CBPtools overview

CBPtools parcellates an ROI and provides the output as
NIfTT images along with commonly used cluster-validity
metrics. The tool’s approach and methods are derived from
a substantial body of parcellation works (Wang et al. 2015;
Bzdok et al. 2015; Chase et al. 2015; Barron et al. 2015;
Hardwick et al. 2015; Eickhoff et al. 2016; Muhle-Karbe
et al. 2016; Genon et al. 2017, 2018; Plachti et al. 2019)
and consist of a customizable rCBP workflow allowing
users to specify the input data and a range of parameters
through a configuration file. CBPtools can calculate con-
nectivity matrices from resting-state or DWI data, but they
may instead be provided directly as input. It then computes
parcellations based on the connectivity matrices (projected
onto NIfTI images of the ROI and as NumPy array files, as
well as 3D voxel plots) and outputs validity metrics for their
evaluation. Note that the procedure outlined here utilizes
hard clustering. Therefore, when connectivity markers are
assumed to change through soft transition (i.e., showing a
gradient), parcels generated through this procedure should
not be interpreted as neurobiological units, but as a simpli-
fied data representation (or compression model). Figure 1
provides an overview of the workflow procedure, with each
step detailed in the following sections.

To illustrate both the usage of CBPtools and the output it
provides, the resting-state and DWI modalities of the HCP
data (Van Essen et al. 2013) were used to parcellate three
regions that have been frequently analyzed using the rCBP
procedure: the right (R) Insula, R amygdala, and an ROI
comprising R presupplementary motor area (preSMA) and
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Fig.1 CBPtools workflow for
applying the rCBP procedure
to diffusion MRI (dMRI) or
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R supplementary motor area (SMA) (see "Example data"
for details).

Architecture

CBPtools is written in Python (version 3.5+) to exploit
Python’s prolific presence in the data science community
and can be installed with pip (‘pip install cbptools’). We
capitalized on pre-existing and widely used packages, such
as NumPy, SciPy, NiBabel, and scikit-learn, which provide
a range of methods needed for the rCBP procedure. This
makes the software very accessible on account of Python
and its libraries being free and open source, as well as com-
patible with many operating systems.

CBPtools makes use of snakemake (Ko6ster and Rah-
mann 2012), an easy-to-use and well documented work-
flow management system with parallel processing capa-
bilities that allows the workflow execution to be scaled
to various processing environments (i.e., server, cluster,
grid, or cloud environments). Through snakemake, CBP-
tools is compatible with job schedulers that support shell
script (such as SLURM and gsub). Furthermore, CBPtools
can be resumed with partially processed data (e.g., due to
hardware failure) making it stable and efficient for use on
real world data. The combination of snakemake’s com-
mand line execution and an easily modifiable configuration
file make it possible to set up and run the software without
any programming knowledge.
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For a more detailed instruction on the use of the package,
please visit the repository at https://github.com/inm7/cbpto
ols or our online documentation (Reuter 2019).

Setup and input specification

Processing parameters and options can be defined by means
of a configuration file, for which the parameter choices and
fields will be validated and logged. Errors during the setup
must first be resolved before proceeding, but warnings are
not critical to the execution of CBPtools. However, they may
give rise to unexpected results and should not be ignored.
Upon completion of the setup, a new project folder is created
at a user-specified location, containing all files necessary to
initiate the workflow. The CBPtools online documentation
(Reuter 2019) has a more detailed overview of the setup
process. We have also provided a quick-start guide in the
Online Resource (Sect. 1.2 Usage example) as well as on
the GitHub project page.

The input data are separated into modality-independent
and modality-dependent categories. Modality-independent
input data include (1) a binary three-dimensional NIfTT ROI
file in the three-dimensional NIfTT image data format, (2)
an optional three-dimensional target mask in the same data
format, used to define the connections that are considered
for each ROI voxel. If not provided by the user, the FSL
(http://www.fmrib.ox.ac.uk/fsl/) distributed average Mon-
treal Neurological Institute (MNI) 152 T1 whole-brain gray
matter group template (2 mm isotropic) will be used as the
target, in which case the required input data should match
the same MNI152 template as well, and (3) a participants
file as a tab-separated text file with a column called ‘partici-
pant_id’ containing all unique identifiers of the subjects to
be included in the study.

Modality-dependent data depend on the selected input
modality, i.e., rsfMRI, dMRI, or connectivity. For rstMRI
data, a 4D time series NIfTI image per subject must be pro-
vided, optionally accompanied by a tab-separated text file
containing confounds for each time point as columns. CBP-
tools assumes that the rsfMRI data have been treated with
necessary fMRI preprocessing including realignment and
normalization to a template space. If the default target mask
is used, then the template space must be MNI152 with 2
mm isotropic voxels. CBPtools also supports using native
masks, but that prohibits the use of the default mask (for
more information, see Online Resource Sect. 1.3.3 Single-
subject parcellation). Denoising based on independent com-
ponent analysis like Automatic Removal of Motion Artifacts
(ICA-AROMA) (Pruim et al. 2015) or FMRIB’s ICA-based
X-noiseifier (FIX) (Salimi-Khorshidi et al. 2014) is encour-
aged if suitable. In particular, FIX in combination with
mean white matter and cerebrospinal fluid signal regres-
sion has been shown to work well in the context of rCBP
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(i.e., improved cluster stability and consistency of clusters
between neuroimaging modalities) (Plachti et al. 2019). The
dMRI modality requires input necessary to perform FSL'’s
probabilistic diffusion tractography (PROBTRACKX2),
consisting of: (1) outputs from Bayesian estimation of diffu-
sion parameters obtained using sampling techniques (BED-
POSTX), (2) a brain extraction (BET) binary mask file, (3) a
transform file taking seed space to DTI space (either a FLIR
matrix or FNIR warpfield; optional), and (4) a file describing
the transformation from DTTI space to seed space (optional
unless input file 3 is defined). Each of these files is subject
specific and can be obtained from FSL’s BEDPOSTX out-
put. Connectivity matrices may be provided as source input
in lieu of rsfMRI or dMRI data. They must be provided in a
ROI-voxel by target-voxel shape, along with a binary three-
dimensional mask of the ROI in NIfTI image data format,
and a NumPy array of voxel coordinates in the order that
the ROI voxels are represented in the connectivity matrix.

To define input data for the rCBP procedure, the full file
paths must be added to the configuration file. CBPtools
offers example configuration files using the ‘cbprools exam-
ple—get data-type’ command, where data type is replaced
by either ’connectivity’, ‘rsfmri’, or ’dmri’, reflecting the
different input data types. The absolute file path for subject-
wise files should be specified as a template, i.e., containing
the string {participant_id} which will be replaced by the ids
of the subjects included in the rCBP project (through the
inclusion of the aforementioned participant’s file). All input
data should be quality controlled prior to using CBPtools, as
only marginal validation is performed on the input data by
CBPtools. Faulty data may halt processing until the issues
are resolved, but in the worst case such data may provide
output without explicit warnings that this output should not
be trusted. Further specified during the setup are parameters
to transform the connectivity matrices (e.g., cubic or Fisher’s
Z transform, or feature reduction through principal compo-
nent analysis), the clustering parameters (e.g., the range of
k clusters requested) and validity measures, as well as the
desired output file formats. Each of these parameters are
likewise specified in the configuration file.

ROI mask preprocessing

There are various atlases and tools that can be used to
respectively define an ROI and extract it as a binary mask.
For instance, the JuBrain Anatomy Toolbox (Eickhoff et al.
2005) can be utilized to extract an ROI using probabilistic
cytoarchitectonic maps. Alternatively, the FSL distributed
atlases (e.g., the Harvard-Oxford Atlas) can likewise be used
to extract an ROI. The mask must be a three-dimensional
binary NIfTI image.

The ROI mask is validated for binarity and conformity
to either an optionally provided target mask, or by default



Brain Structure and Function (2020) 225:1261-1275

1265

the group MNI template space (2 mm isotropic voxels,
91 x 109 X 91 shape, and origin at x = 90, y = — 126, 2
= —72). When connectivity matrices are given as input
in lieu of rsfMRI or dMRI data, the ROI mask is only
validated for binarity. For all other cases, it is important
that input data are in the same space as the mask. It is
possible to use a different space, but then a target mask
must be provided in the desired space, which then both
the ROI mask and input data must conform to. Without
a user-provided target mask, all whole-brain gray mat-
ter voxels are used as target and subsampled (see below)
by default (although this option can be turned off in the
configuration file).

Available preprocessing steps are modality specific
and all are optional. For the rsfMRI modality, the ROI
mask can be median filtered and the target mask can be
subsampled and have all ROI voxels removed from it.
Median filtering replaces each voxel with the median of
its neighboring voxels. For binarized images, this will
remove voxels with too few neighbors and add voxels to
the mask when they have many neighbors. It can be par-
ticularly useful for hand-drawn ROls, as it removes sharp
borders or stray voxels that would not naturally occur in
most ROIs. Subsampling the target mask is recommended
when smoothed BOLD time series are used. This means
that only every second voxel in each dimension is kept
under the spatial-smoothness assumption that neighbor-
ing voxels provide a relatively similar signal. This can
significantly reduce computation time while preserving
most of the information due to spatial smoothness. By
choosing to remove all ROI voxels from the target mask,
the ROI to ROI (i.e., within-ROI) connectivity is ignored.
Within-ROI connectivity (i.e., connectivity between every
pair of voxels within the ROI) tends to be high due to
their relative proximity to one another and may there-
fore dominate the clustering. Whether doing so leads to
better or more biologically relevant parcellation results,
however, is unclear. Its application can also optionally
remove a border around the ROI to reduce the influence
of smoothing. For dMRI, in addition to median filtering,
the ROI can also be upsampled. This upsampling option
spreads the ROI voxels to cover a larger area (reflect-
ing a higher resolution for use with PROBTRACKX?2),
while maintaining the same number of voxels (which is
necessary so that ROI voxels can be mapped back upon
the original ROI mask). Thus, voxels within the upsam-
pled ROI will be spread out equidistantly over a larger
area with no direct neighboring voxels as a result of not
increasing their amount. The target mask can be down-
sampled from a higher to a lower resolution, resulting in
fewer voxels covering the same space (i.e., larger voxels)
which can reduce computation time for PROBTRACKX2.

Connectivity computation

To derive rsfMRI connectivity, the BOLD time series are
optionally smoothed [using NiBabel’s (Brett et al. 2019) nib-
abel.processing.smooth_image], nuisance signal regressed
(linear regression of confound time points on subject time
series), and band-pass-filtered. An ROI-to-target connectiv-
ity matrix is calculated per subject using linear correlations
between the ROI and target BOLD time series. A user can
optionally choose for the connectivity matrices to be Fisher’s
Z transformed and/or be subjected to linear dimensional-
ity reduction (through principal component analysis). For
dMRI, the PROBTRACKX?2 output, a sparse ROI- by target-
voxel connectivity matrix (omatrix2) per subject, is densified
and cubic transformed, and can optionally be subjected to
linear dimensionality reduction as well.

Individual- and group-level clustering

Connectivity from the previous step is given as input to the
k-means algorithm [using scikit-learn’s (Pedregosa et al.
2011) sklearn.cluster.KMeans], separately for each subject
and for each requested number of clusters k. Alternatively,
agglomerative/hierarchical (Hastie et al. 2013) or spec-
tral clustering (Von Luxburg 2007) can be used instead of
k-means. The k-means algorithm was chosen as the default
algorithm due to its popularity in CBP literature. The clus-
tering algorithm assigns each ROI voxel/vertex to a cluster,
effectively grouping similar voxels based on their connec-
tivity profiles (for k-means this is done by minimizing the
squared Euclidean distance between voxel features, i.e., the
connectivity profiles and that of cluster centers). Thus, for
each individual subject and a given modality, the output is
the parcellation of the ROI voxels/vertices.

As the individual-level cluster ids are arbitrary, to deter-
mine a group parcellation that best describes all included
subjects first, the individual clusterings at each k are rela-
beled such that similar clusters get assigned the same cluster
ids across subjects. For each k, all individual clusterings are
given as input to SciPy’s (Jones et al. 2001) implementation
of hierarchical clustering (scipy.cluster.hierarchy) using the
Hamming distance metric and a user-defined linkage algo-
rithm (defaults to ’complete’). Hamming distance is used to
take the arbitrary nature of the cluster ids into account. The
hierarchical clustering result serves as a reference for rela-
beling individual clusterings (Nguyen and Caruana 2007).
Relabel accuracy is calculated for each subject to identify
the permutation of cluster ids that most accurately reflects
the match of a given clustering with the reference cluster-
ing. Relabel accuracy is also presented as one of the various
validity metrics (for more information see Online Resource
Sect. 2.4 Relabeling strategy). Next, the mode of the rela-
beled subject-wise clustering is computed and used as the
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group-level clustering. Optionally, the hierarchical cluster-
ing result can be used as a group-level clustering in lieu
of the mode group-level clustering. Subject-wise follow-up
analyses done in subsequent steps refer to the individual
clusterings, and group analyses refer to the group-level clus-
tering. Note that the group-level parcellation is not calcu-
lated when parcellation is performed in the native space.

Clustering validity

Finding the appropriate number of clusters is a challenging
and unresolved problem. It is common to probe a range of
k values starting at two to a number determined through
prior knowledge of the ROI and the source data (i.e., based
on modality, granularity of the data, or the selected target
regions) structure. Therefore, the clustering solutions at
different k need to be evaluated. One possibility is using
external validation, which contrasts the clustering solutions
against a predetermined structure which is independent of
the source data (i.e., using a predefined cytoarchitectonic
parcellation as an external reference for clustering the results
of the same region). In the absence of information for exter-
nal validation (as is frequently the case), internal cluster
validation can help to select an optimal clustering in a data-
driven way. Several such metrics can be used to rank the
clustering results. However, different metrics often produce
divergent results. Baarsch and Celebi (2012) evaluated the
Dunn index, the Davies—Bouldin index, the Calinski—Hara-
basz index, the Silhouette index, the point biserial measure,
the Pakhira—-Bandyopadhyay—Maulik (PBM) score, and
sum-of-squares. They concluded sum-of-squares to be most
effective, closely followed by the Silhouette index. Popular
alternatives like the Davies—Bouldin index and the Calin-
ski—-Harabasz index were only moderate contenders, while
the Dunn index performed poorly. Even the best measure,
however, was only correct in 60% of the test cases. Neverthe-
less, validity metrics are often tested on simulated or simple
data sets which might not generalize to the complexity inher-
ent in the connectivity data. Furthermore, there exist many
more validity metrics [such as the / index, which was tested
to perform well in a review by Maulik and Bandyopadhyay
(2002)]. In general, it is difficult to deem any single valid-
ity metric to be good for clustering, as data properties may
vary significantly between data sets. Therefore, CBPtools
provides several validity metrics and sufficient care must
be given when deciding which measure to rely upon, also
evident from our results.

Validity metrics and report
Clustering outputs the solution for each clustering granular-

ity k both separately for each subject and grouped together
into a group-level clustering. For each individual clustering

@ Springer

at each value of clustering granularity k, several cluster qual-
ity metrics can be obtained. These include: the Silhouette
index (Rousseeuw 1987), the Calinski—Harabasz index (Cal-
inski and Harabasz 1974), and the Davies—Bouldin index
(Davies and Bouldin 1979). For group labels, again for each
k, relabel accuracy and cophenetic correlation, as a measure
on how well the pairwise distances between the individual
cluster labels are preserved in the group-level clustering, are
given. Similarity between individual clusterings can also be
examined based on the Adjusted Rand index (Rand 1971;
Hubert and Arabie 1985), the V measure (Cramér 1946), or
the adjusted mutual information (Vinh et al. 2010) scores
(whichever is chosen by the user). The resulting similarity
matrices, showing the similarity between pairs of individual
subject clusterings for each k, are presented as dendrograms.
Likewise, similarity between individual clusterings to the
group clustering is computed using the same metric. Care
needs to be taken when interpreting this score, however,
since the group-level clustering is not independent of the
individual subject clusterings which might inflate similarity
scores. Lastly, the group clustering is mapped upon the ROI
mask and stored as an NIfTI image which can be visualized
using any of the various NIfTT format image viewers [e.g.,
Mango (http://ric.uthscsa.edu/mango/), MRIcron (https://
www.nitrc.org/projects/mricron) or FSLeyes (https:/fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes)].

The statistics are stored as tab-separated files as well
as figures in a user-defined file format. Interim data (e.g.,
connectivity, cluster labels) are stored as NumPy (Oliphant
2006) binary files and tab-separated text files. This data can
then be used to determine what cluster solution best fits the
input data, and hence is best suited for further use in more
in-depth analyses. Optionally, subject-specific reports (i.e.,
metrics and plots) can be obtained in addition to the group-
level clustering reports if specified in the configuration file
(see Online Resource Sect. 1.3.3 Single-subject parcella-
tion). Lastly, one or more reference NIfTI images can be
provided to allow direct comparison between the CBPtools
group-level cluster solutions and a priori parcellations (see
Online Resource Sect. 1.3.5 Using reference images).

Example data

The right (R) preSMA and SMA, R insula, and R amyg-
dala are prominently featured regions in CBP analyses, and
were therefore selected as ROIs to evaluate our software (see
Fig. 2). The R preSMA-SMA region (at 972 voxels) was
extracted using the Juelich Cytoarchitectonic Atlas (Eickhoff
et al. 2005; Ruan et al. 2018), and the R insula (546 voxels)
and R amygdala (280 voxels) regions were both extracted
using the FSL distributed Harvard-Oxford Atlas. The FIX-
denoised rsfMRI data of 300 healthy unrelated subjects
(mean age 28.57, 150 females, no significant age (t = 0.71,
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Fig.2 Outline of the three ROIs used for the example procedure. a
The three columns highlight the R preSMA-SMA (blue, left), R
amygdala (green, middle), and R insula (red, right) in sagittal, coro-
nal, and axial (top to bottom) sections. The figures were generated
using Nilearn’s plotting tools (Abraham et al. 2014). b All ROIs

p = .48) and educational (r = —0.31, p =.75) difference
between genders) from the HCP (Van Essen et al. 2013),
and BEDPOSTX results of the minimally processed (Glasser
et al. 2013) dMRI data of the same 300 subjects were used as
input data for the rsfMRI and dMRI modalities, respectively.

Workflow execution proceeded separately for each ROI
and modality, as depicted in Fig. 1. For each execution the
average MNI152 T1 brain (2 mm isotropic) from FSL (Jen-
kinson et al. 2012) was binarized and used as a whole-brain
gray matter target mask. For rsfMRI only, the target mask
was subsampled (see "ROI mask preprocessing") to improve
computational efficiency.

Including the preprocessing of the ROI and target masks,
all the following steps were done by CBPtools with the con-
figuration parameters outlined below (these are the CBPtools
default configuration parameters). The rstMRI BOLD time
series were 5 mm FWHM smoothed, global WM, global
CSF, and 24 motion parameter signal corrected (including
a bias term), and 0.01-0.08 Hz band-pass-filtered (see the
green boxes in Fig. 1c). Global WM and global CSF nui-
sance signal regression in addition to FIX-denoising was
used as it appears to give the highest reliability for rsfMRI
CBP (Plachti et al. 2019). The linear correlations between
ROI and target voxel time series were then computed to
obtain a ROI-to-target connectivity matrix for each subject

shown from a right-sided view with posterior (P) to the left, and ante-
rior (A) to the right. ¢ An anterior view of the three ROIs, with right
(R) and left (L) flipped to radiological display convention. The 3D
representations in b and ¢ were generated using Mango (multi-image
analysis GUI; http://ric.uthscsa.edu/mango/)

and Fisher’s Z transformed. To derive dMRI connectivity,
probabilistic tractography was performed with the following
parameters: distance threshold = 5, loop check = true, cur-
vature threshold = 0.2, step length = 0.5, number of samples
= 5000, steps per sample = 2000, correct path distribution
for pathway length = true. This yielded a high-resolution
ROI to low-resolution target (whole-brain) connectivity
matrix per subject which was cubic transformed.

Each subject’s connectivity matrix was used as input
for k-means clustering (with k from 2 to 5, the k-means++
initialization method, 256 initializations [as suggested by
Nanetti et al. (2009), and a maximum of 10,000 iterations;
Fig. 1d]. The range of k was chosen after consulting relevant
literature regarding the three ROIs. To maintain the same
settings for each ROI and make replication of the exam-
ple procedure computationally less intensive, we chose to
keep the range of k consistent between ROIs. To obtain a
group-level clustering, hierarchical clustering with complete
linkage and Hamming distance was applied (Fig. 1f) on
individual-level clusterings to obtain a combined reference
clustering per k (Nguyen and Caruana 2007). This reference
clustering was subsequently used to relabel the individual
clusterings. The resulting labels were used to calculate the
mode for each voxel, serving as the group-level clustering
result for each value of k. Cluster validation was performed
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on the individual clusterings using the Silhouette index, the
Calinski—Harabasz index, and the Davies—Bouldin index
(Fig. le). The adjusted rand Index (ARI) was computed as
a similarity measure between individual and group cluster-
ings (Fig. 1g).

The results section is structured such that each ROI
reflects a different aspect of the CBPtools workflow. For
the preSMA-SMA ROI we highlighted the reproducibility
of histological parcellations, for the insula we focussed on
the subdivisions of various k cluster solutions for the group
parcellations and, lastly, for the amygdala we evaluated the
cluster validity metrics provided as output by the workflow.
All output not highlighted here is available in the Online
Resource.

Results
preSMA-SMA parcellation

The group clusterings for the two-cluster solution approxi-
mated the R preSMA-SMA cytoarchitectonic differen-
tiation with an ARI of .71 for rsfMRI, and .76 for dMRI
results (where O indicates no similarity at all, and 1 indi-
cates perfect similarity). That is, only 76 (7.82%) and 63
(6.48%) out of all voxels were mismatched for rsfMRI and
dMRI, respectively. Figure 3a provides a visual representa-
tion of the ROI with the two-cluster labels mapped onto

it for the cytoarchitectonically defined region, and the two
rCBP defined subdivisions using rsfMRI and dMRI data.
The Silhouette index (Fig. 3c), Davies—Bouldin index,
and Calinski—Harabasz index all indicated the two-cluster
solution as the best fit to the rsfMRI input data (note that
the Davies—Bouldin index indicates a better fit through a
lower value). The Silhouette and Calinski—Harabasz indi-
ces obtained from the dMRI clusterings both suggested the
two-cluster solution, with only the Davies—Bouldin index
suggesting a slightly better fit for the three-cluster solution.
Our results are consistent with previous studies regarding
functional and structural parcellation of the preSMA-SMA
regions (Johansen-Berg et al. 2004; Klein et al. 2007; Kim
et al. 2010; Zhang et al. 2015).

Insula parcellation

All internal validity metrics agreed that a two-cluster sepa-
ration into an anterior and posterior subdivision fitted the
rsfMRI source data best. The two- to five-cluster solu-
tions are shown as 3D volumetric/voxel plots in Fig. 4. The
three-cluster rsfMRI solution added a medial parcel (green),
extending more into the anterior parcel (blue) rather than
the posterior parcel (orange) of the two-cluster solution.
The four-cluster rsfMRI solution further subdivided the
medial and part of the posterior parcel into dorsal-anterior
and medial parcels (green and red, respectively), whereas
the five-cluster solution added only a thin parcel (magenta)

b 05 k
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mm 3
w4
0.4 —
Cyto rsfMRI dMRI %
2
(o 1.0 < 03
3 - rsfMRI 2
- 08 [}
2 dVRI 3
T 06 =
] D o2
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e
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w 02
=
2 oo 0.1
-0.2
2 3 4 rsfMRI dMRI
Clusters Modality

Fig.3 R preSMA-SMA results from the rCBP procedure. a The two-
cluster solutions of the combined R preSMA and SMA ROI for the
cytoarchitectonically defined (Ruan et al. 2018) subdivision from the
Jiilich histological atlas (Eickhoff et al. 2005), and the rsfMRI and
dMRI connectivity-based parcels from left to right. The 3D repre-
sentations were generated using matplotlib’s 3D voxel/volumetric
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plotting and are in the same view as Fig. 2b. b ARI scores between
the individual subject clustering results and the group-level cluster-
ing result for both rsfMRI and dMRI for k = [2, 3,4, 5]. ¢ Silhouette
index for all cluster solutions (k = [2, 3,4, 5]) where a higher Silhou-
ette index indicates a better fit. Here, the two-cluster solution seems
to best fit the input data for both rsfMRI and dMRI
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Fig.4 R Insula results from the rCBP procedure. a Insula parcels
for the two-, three-, four-, and five-cluster solutions obtained from
rsfMRI (top row) and dMRI (bottom row) connectivity. All images
are in the same view (right-sided) as Fig. 2b. b Internal validity

in between the aforementioned dorsal-anterior and medial
parcels.

Likewise for dMRI data, the two-cluster solution sepa-
rated the R insula into anterior and posterior subdivisions.
However, the Davies—Bouldin index slightly diverged from
the other metrics, instead suggesting a three-cluster solution
to best fit the source data. The shape of the dMRI clusters
also showed a different picture than the rstMRI results, par-
ticularly for the three- and five-cluster solutions. The three-
cluster solution added a medial parcel that did not extend as
much into the dorsal direction as the rsfMRI three-cluster
solution did. Slightly more agreement between modalities
was found in the four-cluster solution, where the posterior
parcel was subdivided into a dorsal (blue) and ventral (red)
part, the latter of which was further split into the five-cluster
solution.

Functional parcellation of the two-cluster rsfMRI solution
for the insula was in line with prior parcellations (Kelly et al.
2012). In addition, Nanetti et al. (2009) suggest a common

rsfMRI

- k
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T
% 200
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3
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dMRI rsfMRI dMRI

scores for all tested solutions (k = [2,3,4,5]). The Silhouette index
(left) and the Calinski—Harabasz index (right) indicate a better fit
through a higher score, whereas the Davies—Bouldin index (middle)
is better when lower

parcellation of the insula along the anterior-posterior axis
for dMRI data. The four-cluster dMRI parcellation further-
more visually resembles the insula’s functional differentia-
tion uncovered by Kurth et al. (2010b) using a meta-analytic
approach, with only our ventral-anterior parcel (red) extend-
ing more anteriorly than theirs.

Amygdala parcellation

Similar to the other two ROIs, the model that best fits the
data in the R amygdala was bipartite. Nevertheless, the two-
cluster solutions for rsfMRI and dMRI connectivity dif-
fered substantially (Fig. 5d, e). On the one hand, the rsfMRI
two-cluster solution showed a dorsal (superior) and ventral
(inferior) subdivision of the Amygdala. On the other hand,
the dMRI two-cluster solution showed a medial and lateral
subdivision. At higher clustering granularities clusters split
further among the aforementioned axes, rather than finding
common ground.
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Fig.5 Various CBPtools output figures for the R amygdala parcella-
tion. a Internal validity scores for all tested solutions (k = [2, 3, 4, 5]).
The Silhouette index (left) and the Calinski-Harabasz index (right)
indicate a better fit through a higher score, whereas the Davies—Boul-
din index (middle) is better when lower. b Group similarity scores

d

The Silhouette and Calinski—Harabasz indices (Fig. 5a)
suggested a two-cluster solution to best fit the rsfMRI source
data. However, the Davies—Bouldin index instead suggested
a five-cluster solution to fit better. The two-cluster solution
approximated prior functional parcellations of the amygdala
(Mishra et al. 2014; Zhang et al. 2018) and also prior cyto-
architectonic mapping of the region (Amunts et al. 2005).
The dorsal cluster (orange) overlapped with the cytoarchi-
tectonic outline of R amygdala centromedial and amygda-
lostriatal subregions, whereas the ventral cluster (blue) over-
lapped with the laterobasal and superficial subregions. At
the three-cluster granularity, the ventral cluster was divided
into a cluster resembling the cytoarchitectonic laterobasal
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(i.e., the similarity of individual clusterings to the group clustering),
with the cluster number k on the x-axis, comparing rsfMRI (blue) to
dMRI (orange). ¢ Relabel accuracy displayed in a similar format as b.
d The two- and three-cluster solution of the R amygdala for rsfMRI. e
the same for dMRI

subregion (blue) and one resembling the superficial subre-
gion (green), the latter of which is best seen from a left-sided
view (Fig. S6b). The four-cluster solution subdivided mostly
the dorsal cluster (orange), with the new cluster resembling
the amygdalostriatal subregion. However, it appeared far
larger than its cytoarchitectonic counterpart. The five-cluster
solution further subdivided the ventral cluster (blue), but
here no further cytoarchitectonic subdivisions exist.

For the dMRI clusterings, all validity indices (Fig. 5a)
suggested a two-cluster solution to best fit the source data.
As the clustering granularity increased, the R amygdala split
further along its medial-lateral axis. Previous parcellation
works using dMRI data (Solano-Castiella et al. 2010; Saygin
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et al. 2011; Fan et al. 2016; Wen et al. 2016) also found
similar clusters along the medial-lateral axis. ARI similar-
ity of individual clusterings to the group-level clustering
(Fig. 5b) was higher for clusterings on dMRI data than on
rsfMRI data, also reflected by the relabel accuracy (Fig. 5c).

Discussion
General pattern revealed by CBP

Separating the SMA and preSMA is a popular approach to
validate rCBP methods (Johansen-Berg et al. 2004; Klein
et al. 2007; Kim et al. 2010; Zhang et al. 2015), as it provides
a gold standard and furthermore highlights the ability of
the rCBP procedure to reproduce histological parcellations.
These two neighboring regions exhibit an abrupt change in
connectivity profile where their borders are expected to be,
attributed to predominant connections to the motor regions
for the SMA and prefrontal connections for the preSMA
(Johansen-Berg et al. 2004). As voxels are assigned to clus-
ters based on similarity in their connectivity profiles, sepa-
rating the preSMA—-SMA ROI through automated parcel-
lation approaches should therefore be straightforward. By
using the cytoarchitectonically defined preSMA and SMA
regions as external validation, we were able to assess his-
tological reproducibility of the preSSMA-SMA ROI using
CBPtools. This was achieved with a very high similarity
(ARI > 0.7) for both the dMRI and the rsfMRI connectivity-
driven parcellation to the cytoarchitectonic definition of the
ROL

While results for the preSMA-SMA parcellation were
rather straightforward, this was not the case for the R insula
parcellation for which many different suggestions for opti-
mal cluster solutions exist in the literature (two-cluster
(Cauda et al. 2011), three-cluster (Deen et al. 2011; Chang
et al. 2013), and four-cluster (Kurth et al. 2010b), as well as
various solutions exceeding our k-range (Kelly et al. 2012)).
These differences may in part be caused by relatively small
data sets with different properties, difficulties on account of
intersubject alignment when delineating the ROI mask, as
well as variability between research groups in their imple-
mentation and use of methods and imaging modalities. Our
results suggested a two-cluster solution to best fit both the
dMRI and rsfMRI-based connectivity data, although this
does not imply it is neurobiologically optimal. Early work on
the insula has provided evidence for an anterior (dysgranu-
lar) and posterior (granular) subdivision separated by the
central insular sulcus (Brodmann 1909). Cytoarchitectoni-
cally the posterior insula can be further subdivided into two
dorsal posterior areas and one ventral posterior area (Kurth
et al. 2010a), but no evidence exists for the anterior insula.
Whereas the two-cluster solution matched well between the

dMRI and rsfMRI modalities, the results diverged at the
three- and five-cluster granularities. The mid-posterior clus-
ter appearing in the dMRI four-cluster solution (Fig. 4a; red)
and the mid-anterior cluster appearing in the rsfMRI four-
cluster solution (red) made the solutions at the four-cluster
granularity more similar. However, the rsfMRI mid-posterior
cluster (green) extends more dorsally than its dMRI coun-
terpart. Meta-analysis of the insula (Kurth et al. 2010b)
resembles the four-cluster solution of the R insula, associ-
ating the posterior cluster (blue) with sensorimotor function,
the ventral-anterior cluster (orange) with social-emotional
functions, the dorsal-anterior cluster (green) with cognitive
functions, and the medial cluster (red) with chemical sensory
functions. The medial cluster extends further into the pos-
terior direction for the dMRI parcellations than is the case
for the meta-analytic results, and in addition extends further
dorsally for the rsfMRI parcellation.

For the R amygdala, the two-cluster solution best rep-
resented the data for both the dMRI and rsfMRI modali-
ties. The rsfMRI parcellation of the R amygdala that best
fit the source data was a bipartite dorso-ventral subdivision.
These results match earlier findings of Mishra et al. (2014),
likewise a dorso-ventral (superior—inferior) subdivision in
the two-cluster solution using functional connectivity, and a
similar dorsal, ventral, and medial subdivision for the three-
cluster solution. The same three-cluster solution was found
by Zhang et al. (2018). Our validity metrics indicated a best
fitting two-cluster solution, but as this does not necessarily
imply neurobiological accuracy, a three-cluster solution is
likewise viable. Furthermore, the parcellations visually cor-
respond to the cytoarchitectonic mapping of the R amygdala
(Amunts et al. 2005) up to the four-cluster solution.

Where a bipartite dorso-ventral subdivision of the amyg-
dala best fits the rsfMRI data, the dMRI data instead best
fits within a bipartite medio-lateral subdivision. This pattern
resembles the two-cluster solution found by Solano-Castiella
et al. (2010) and Fan et al. (2016) in that the solution divided
the amygdala into a medial and a lateral cluster. Tract trac-
ing of the rat amygdaloid complex shows that the medial
amygdala is related to connections between both intrahemi-
spheric amygdalae (Pikkarainen and Pitkdnen 2001). The
lateral amygdala is instead found to be connected to soma-
tosensory cortical areas (Jolkkonen and Pitkdnen 1998).
Solano-Castiella et al. (2010) note the possible existence
of a third cluster between the medial and lateral clusters,
which resembles the pattern of clusters we found for the
three-cluster solution.

The amygdala is a peculiar region on account of its spa-
tial location, which may explain the differences between the
rsfMRI and dMRI results. Whereas the rsfMRI parcellations
resemble cytoarchictural subdivisions, the dMRI results may
instead be driven by spatial artefacts on account of false
positives in probabilistic fiber bundle tracking (Zalesky et al.

@ Springer



1272

Brain Structure and Function (2020) 225:1261-1275

2016; Maier-Hein et al. 2017) of subcortical areas. As the
region gets split at higher granularities, it is possible that
instead of creating subdivisions on the basis of neurobiologi-
cally relevant signals, instead the subdivisions are driven
by noise in the signal on account of methodological idi-
osyncracies. Investigating why such subdivisions occur at
higher granularities is beyond the scope of this work, but is
nonetheless an important consideration when investigating
clusters with dMRI data. We further investigated whether
parcellations of the R amygdala were driven by within-
ROI and short-range connections. We parcellated dMRI
data after excluding ROI-to-ROI connectivity (excluding 5
mm, 20 mm, and 40 mm border around the ROI in Online
Resource Fig. S7), including a mapping of the linear correla-
tions predominantly driving the parcellation results (Online
Resource Fig. S9). The resulting parcellations remained
mostly unchanged, exhibiting the same medio-lateral pat-
tern of subdivisions.

Overall, divergence between validity indices (i.e., the
Davies—Bouldin index from the other validity metrics) high-
lights the importance of choosing a proper validity metric,
each of which assesses cluster validity in a unique way. Note
that comparisons of validity scores outside of the sample are
meaningless, hence rsfMRI and dMRI validity scores can-
not be directly compared. For the R insula the divergence is
not necessarily surprising, as it shows transitional changes
in cytoarchitecture (Kurth et al. 2010a), rather than sharp
cytoarchitectonic borders present between the preSMA and
SMA, making it difficult to define stable hard borders. Simi-
larity of cluster labels between subject-wise clusterings may
vary considerably. It is as of yet unclear what factors con-
tribute to the high dissimilarity between subjects on some
cluster solutions and for some ROIs. For instance, similarity
values for the individual clustering results to the group-level
clustering results on the two-cluster preSMA—-SMA solution
are high (see Online Resource Fig. S4b), which may imply
that the regions have strongly divergent connectivity patterns
that are stable between subjects. However, regions such as
the amygdala show lower similarity values. This may in part
be due to poor signal to noise ratio with MRI in the subcorti-
cal regions (Noble et al. 2017). Nevertheless, the solutions
showcased here can be found in previously published works.
However, as far as we are aware, no data-driven cluster-
ing was performed using dMRI data for the R amygdala at
higher granularities.

Conclusions and perspectives

Here, we have demonstrated the effectiveness of using
CBPtools to procure resting-state functional and diffusion
MRI connectivity-derived parcellations on three function-
ally and spatially different ROIs. Connectivity and cluster-
ing methods have been carefully chosen to both reflect the
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most popular and the most widely evaluated approaches in
the brain mapping community. The procedure is customiz-
able through a configuration file, allowing for fine-tuned
processing for each ROI. Furthermore, by providing or
specifying input as well as parameters given to CBPtools,
any parcellation work can be reproduced with relative ease
and, importantly, can be compared to other works using
this tool. To illustrate the efficiency of the procedure, we
have provided benchmarks (see Online Resource Sect. 3.1
Benchmarks) as a guideline for what to expect when exe-
cuting CBPtools on a similar data set, with similar set-
tings, on an average computational cluster. Through the
use of the CBPtools output, a user will be able to quickly
generate parcellations and validity metrics that can either
be used directly or used to inform a more detailed post hoc
analysis. For instance, the selection of clustering granular-
ity as well as multi-modal integration of cluster solutions
may require further fine-grained and region-specific analy-
ses. We opted to provide all k cluster solutions with guid-
ance for the user to choose the optimal solution, as there
likely is no ’one true parcellation’, but instead biologically
relevant maps at different granularities.

Future development of the software will support the
integration of MACM and structural covariance modali-
ties, found to be valuable for studying the brain and adding
an additional layer of information to multi-modal CBP
(Eickhoff et al. 2015; Plachti et al. 2019). In the framework
of the Human Brain Project and in collaboration with the
Juelich Supercomputing Center, a web-based version of
the software that can execute the rCBP procedure on vari-
ous predefined and preprocessed large data sets is planned.
This will offer a high-throughput solution for massive par-
allelization for rCBP on a user-defined ROI, in an online
environment where all summary output will be available
for download.

In summary, we provide an openly distributed package
for performing rCBP for which to our knowledge there is
currently no alternative. We have outlined its procedure
and demonstrated its efficacy using three commonly par-
cellated ROIs on a substantial data set. By introducing
CBPtools we provide researchers the means to conduct
reproducible, data-driven rCBP analyses on multiple neu-
roimaging modalities and large amounts of subject data.
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