000874513 001__ 874513
000874513 005__ 20240625095028.0
000874513 0247_ $$2doi$$a10.1103/PhysRevB.101.115117
000874513 0247_ $$2ISSN$$a0163-1829
000874513 0247_ $$2ISSN$$a0556-2805
000874513 0247_ $$2ISSN$$a1050-2947
000874513 0247_ $$2ISSN$$a1094-1622
000874513 0247_ $$2ISSN$$a1095-3795
000874513 0247_ $$2ISSN$$a1098-0121
000874513 0247_ $$2ISSN$$a1538-4489
000874513 0247_ $$2ISSN$$a1550-235X
000874513 0247_ $$2ISSN$$a2469-9950
000874513 0247_ $$2ISSN$$a2469-9969
000874513 0247_ $$2Handle$$a2128/24552
000874513 0247_ $$2WOS$$aWOS:000518950200002
000874513 0247_ $$2altmetric$$aaltmetric:72975883
000874513 037__ $$aFZJ-2020-01487
000874513 082__ $$a530
000874513 1001_ $$0P:(DE-Juel1)156259$$aNghiem, H. T. M.$$b0
000874513 245__ $$aTime-dependent spectral functions of the Anderson impurity model in response to a quench with application to time-resolved photoemission spectroscopy
000874513 260__ $$aWoodbury, NY$$bInst.$$c2020
000874513 3367_ $$2DRIVER$$aarticle
000874513 3367_ $$2DataCite$$aOutput Types/Journal article
000874513 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1584092956_24987
000874513 3367_ $$2BibTeX$$aARTICLE
000874513 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874513 3367_ $$00$$2EndNote$$aJournal Article
000874513 520__ $$aWe investigate several definitions of the time-dependent spectral function A(ω,t) of the Anderson impurity model following a quench and within the time-dependent numerical renormalization group (TDNRG) method. In terms of the single-particle two-time retarded Green function Gr(t1,t2), the definitions we consider differ in the choice of the time variable t with respect to t1 and/or t2 (which we refer to as the time reference). In a previous study [H. T. M. Nghiem et al., Phys. Rev. Lett. 119, 156601 (2017)], we investigated the spectral function A(ω,t), obtained from the Fourier transform of Im[Gr(t1,t2)] with respect to the time difference t′=t1−t2, with time reference t=t2. Here, we complement this work by deriving expressions for the retarded Green function for the choices t=t1 and the average, or Wigner, time t=(t1+t2)/2, within the TDNRG approach. We compare and contrast the resulting A(ω,t) for the different choices of time reference. While the choice t=t1 results in a spectral function with no time dependence before the quench (t<0) (being identical to the equilibrium initial-state spectral function for t<0), the choices t=(t1+t2)/2 and t=t2 exhibit nontrivial time evolution both before and after the quench. Expressions for the lesser, greater, and advanced Green functions are also derived within TDNRG for all choices of time reference. The average-time lesser Green function G<(ω,t) is particularly interesting, as it determines the time-dependent occupied density of states N(ω,t)=G<(ω,t)/(2πi), a quantity that determines the photoemission current in the context of time-resolved pump-probe photoemission spectroscopy. We present calculations for N(ω,t) for the Anderson model following a quench, and discuss the resulting time evolution of the spectral features, such as the Kondo resonance and high-energy satellite peaks. We also discuss the issue of thermalization at long times for N(ω,t). Finally, we use the results for N(ω,t) to calculate the time-resolved photoemission current for the Anderson model following a quench (acting as the pump) and study the different behaviors that can be observed for different resolution times of a Gaussian probe pulse.
000874513 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000874513 542__ $$2Crossref$$i2020-03-11$$uhttps://link.aps.org/licenses/aps-default-license
000874513 588__ $$aDataset connected to CrossRef
000874513 7001_ $$0P:(DE-HGF)0$$aDang, H. T.$$b1
000874513 7001_ $$00000-0003-0815-5237$$aCosti, T. A.$$b2$$eCorresponding author
000874513 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.101.115117$$bAmerican Physical Society (APS)$$d2020-03-11$$n11$$p115117$$tPhysical Review B$$v101$$x2469-9950$$y2020
000874513 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.101.115117$$gVol. 101, no. 11, p. 115117$$n11$$p115117$$tPhysical review / B$$v101$$x2469-9950$$y2020
000874513 8564_ $$uhttps://juser.fz-juelich.de/record/874513/files/PhysRevB.101.115117.pdf$$yOpenAccess
000874513 8564_ $$uhttps://juser.fz-juelich.de/record/874513/files/PhysRevB.101.115117.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874513 909CO $$ooai:juser.fz-juelich.de:874513$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874513 9101_ $$0I:(DE-588b)5008462-8$$60000-0003-0815-5237$$aForschungszentrum Jülich$$b2$$kFZJ
000874513 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000874513 9141_ $$y2020
000874513 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874513 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874513 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000874513 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000874513 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874513 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874513 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874513 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874513 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874513 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874513 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874513 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874513 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874513 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000874513 9801_ $$aFullTexts
000874513 980__ $$ajournal
000874513 980__ $$aVDB
000874513 980__ $$aUNRESTRICTED
000874513 980__ $$aI:(DE-Juel1)IAS-3-20090406
000874513 981__ $$aI:(DE-Juel1)PGI-2-20110106
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.176806
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.035440
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.156801
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.236808
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.066804
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.045330
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.266408
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.067402
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.166401
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.84.299
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.085113
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjst/e2009-00962-3
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.193303
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.125124
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.349
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.146802
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2004/04/P04005
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.076401
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/220/1/012022
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.201407
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.235429
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.196801
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.245113
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/19/195216
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.075118
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.115115
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.075118
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.035129
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.165130
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.156601
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.155107
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.83.808
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.155435
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.045108
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.100.201104
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.80.395
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.5528
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.136401
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-8949/2015/T165/014012
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.189903
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.115132
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.21.1003
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.14254
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.076402
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.245114
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.235127
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.28.6904
000874513 999C5 $$1A. C. Hewson$$2Crossref$$oA. C. Hewson The Kondo Problem to Heavy Fermions 1997$$tThe Kondo Problem to Heavy Fermions$$y1997
000874513 999C5 $$1H. Haug$$2Crossref$$oH. Haug Quantum Kinetics in Transport and Optics of Semiconductors 2008$$tQuantum Kinetics in Transport and Optics of Semiconductors$$y2008
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.58.3666
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.045103
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.11986
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.104432
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2011-20880-7
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/lpor.201000035
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.1602094
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.87.023305
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.085423
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.4.5.023
000874513 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.116401