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We investigate several definitions of the time-dependent spectral function A(ω, t ) of the Anderson impurity

model following a quench and within the time-dependent numerical renormalization group (TDNRG) method. In

terms of the single-particle two-time retarded Green function Gr (t1, t2), the definitions we consider differ in the

choice of the time variable t with respect to t1 and/or t2 (which we refer to as the time reference). In a previous

study [H. T. M. Nghiem et al., Phys. Rev. Lett. 119, 156601 (2017)], we investigated the spectral function

A(ω, t ), obtained from the Fourier transform of Im[Gr (t1, t2)] with respect to the time difference t ′ = t1 − t2,

with time reference t = t2. Here, we complement this work by deriving expressions for the retarded Green

function for the choices t = t1 and the average, or Wigner, time t = (t1 + t2)/2, within the TDNRG approach.

We compare and contrast the resulting A(ω, t ) for the different choices of time reference. While the choice

t = t1 results in a spectral function with no time dependence before the quench (t < 0) (being identical to the

equilibrium initial-state spectral function for t < 0), the choices t = (t1 + t2)/2 and t = t2 exhibit nontrivial

time evolution both before and after the quench. Expressions for the lesser, greater, and advanced Green

functions are also derived within TDNRG for all choices of time reference. The average-time lesser Green

function G<(ω, t ) is particularly interesting, as it determines the time-dependent occupied density of states

N (ω, t ) = G<(ω, t )/(2π i), a quantity that determines the photoemission current in the context of time-resolved

pump-probe photoemission spectroscopy. We present calculations for N (ω, t ) for the Anderson model following

a quench, and discuss the resulting time evolution of the spectral features, such as the Kondo resonance and

high-energy satellite peaks. We also discuss the issue of thermalization at long times for N (ω, t ). Finally, we use

the results for N (ω, t ) to calculate the time-resolved photoemission current for the Anderson model following a

quench (acting as the pump) and study the different behaviors that can be observed for different resolution times

of a Gaussian probe pulse.
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I. INTRODUCTION

The study of quantum impurity systems out of equilibrium

is relevant to several fields, including the nonequilibrium

dynamics of ions scattering from metallic surfaces [1,2],

the steady-state nonequilibrium transport through Kondo-

correlated quantum dots [3–5], or the nature of nonequi-

librium states in periodically driven quantum dot systems

[6]. In addition, solving for the nonequilibrium dynamics of

quantum impurity systems is a prerequisite for applications to

the nonequilibrium dynamical mean field theory [7] of cor-

related materials, with relevance to interpreting time-resolved

photoemission experiments [8,9]. While there are many stud-

ies investigating the time-dependent dynamics of quantum

impurity systems, including functional and real-time renor-

malization group methods [10–12], flow equation [13,14],

quantum Monte Carlo [15,16], density matrix renormaliza-

tion group methods [17–19], hierarchical quantum master-

equation approach [20,21], and, the time-dependent numerical

renormalization group (TDNRG) method [5,22–31], there

are fewer studies devoted to investigating the nature of the

time-dependent spectral function in nonequilibrium situations

[16,24,30–35].

In contrast to the equilibrium case, where the spectral

function is uniquely defined via the Lehmann representation,

and can be derived directly from the retarded Green function

[36], in the case of nonequilibrium, there is a degree of free-

dom in defining the time-dependent spectral function A(ω, t )

from the Fourier transform of the retarded two-time Green

function Gr (t1, t2), depending on how t is measured relative

to t1 and/or t2 prior to carrying out the Fourier transform with

respect to the relative time t ′ = t1 − t2. In the context of time-

dependent transport through quantum dots [32,37], the choice

t = t1 is appropriate.1 whereas in the context of time-resolved

photoemission spectroscopy [38–41], the natural choice is the

average time t = (t1 + t2)/2.

1This choice is also appropriate in other situations, e.g., in calculat-

ing the injected current from a probe into a Luttinger-liquid channel

subject to a quench [59–61].
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In this paper, we elaborate more on the various definitions
of the time-dependent spectral functions using different time
references, and show the effect of the time reference on the
time evolution of the spectral function of the Anderson impu-
rity model subject to a sudden quench and within the TDNRG
method. We also apply our results of time-dependent spectral
function to time-resolved photoemission spectroscopy. The
outline of the paper is as follows. In Sec. II, we describe the
model, briefly outline the TDNRG method, define the parame-
ter quench used for all calculations in the paper and specify the
relevant timescales. In Sec. III, we define the various two-time
Green functions studied in this paper, give the various possible
definitions of time-dependent spectral functions A(ω, t ) in
terms of the retarded Green function, with time t taken as
either t1, t2 or (t1 + t2)/2, and discuss some general properties.
In Sec. IV we present expressions for the retarded Green func-
tion for each time reference within the TDNRG formalism and
discuss their structure and physical interpretation (Sec. IV A).
We show that the average-time Green function, like that for
t = t2, exhibits a nontrivial time evolution at both negative
and positive times (Sec. IV A). Numerical issues in the eval-
uation of time-dependent spectral functions are discussed
(Sec. IV B). In particular, evaluation of the retarded (and also
the lesser and greater) Green functions at the average time
is shown to pose a significant numerical bottleneck within
TDNRG due to the appearance of four-loop summations over
states which cannot be reduced to matrix multiplications for
efficient evaluation. We resolve this issue by implementing
the calculations using parallel computing within OpenMP. In
Sec. IV C, we evaluate the time-dependent spectral functions
numerically for all three time references, for a quench in
the Anderson model, and compare the time evolution of the
low-energy Kondo resonance and high-energy satellite peaks
for the different cases. In Sec. V, we derive expressions for
the lesser Green function at both positive and negative average
time (Sec. V A) and use these to calculate the time-dependent
occupied density of states of the Anderson model following
a quench (Sec. V B) and the photoemission current intensity
for Gaussian probe pulses of different widths (Sec. V C).
Section VI concludes with possible future applications of the
formalism developed here. Appendix A gives the detailed
derivation of the average-time advanced Green function, while
Appendix B lists the TDNRG expressions for advanced,
lesser, and greater Green functions for all time references. The
convergence of the Lorentzian broadening scheme, used to
evaluate the time-dependent spectral functions, is discussed
in Appendix C, while Appendix D discusses thermalization
effects in the time-dependent occupied density of states (lesser
Green function) at long times.

II. MODEL, METHOD, PARAMETER QUENCH,

AND TIMESCALES

A. Model

We consider the following time-dependent Anderson im-

purity model

H (t ) =
∑

σ

εd (t )ndσ + U (t )nd↑nd↓ +
∑

kσ

ǫkσ c
†
kσ

ckσ

+
∑

kσ

V (c†
kσ

dσ + d†
σ ckσ ), (1)

where εd (t ) = θ (−t )εi + θ (t )ε f is the energy of the local

level, U (t ) = θ (−t )Ui + θ (t )U f is the local Coulomb interac-

tion, σ labels the spin, ndσ = d†
σ dσ is the number operator for

local electrons with spin σ , and ǫk is the kinetic energy of the

conduction electrons with constant density of states ρ0(ω) =
∑

k δ(ω − ǫk ) = 1/(2D) with D = 1 the half-bandwidth. The

time dependence enters via a sudden quench on the model

parameters at t = 0, either by changing the local level position

from εi to ε f or by changing the Coulomb repulsion from Ui

to U f or both. The particular quench studied in this paper is

described in more detail at the end of this section.

B. Method

We next briefly outline the TDNRG approach [22,23,27]

to the time evolution of physical observables following a

sudden quench at t = 0. In order to set the notation, we

illustrate the approach for a local observable Ô. Its time evo-

lution is given by the expectation value O(t > 0) ≡ 〈Ô〉ρ̂ =
Tr[e−iH f t ρ̂eiH f t Ô], where H f = H (t > 0) is the final-state

Hamiltonian, and ρ̂ = e−βHi/Zi is the initial-state density

matrix corresponding to the initial-state Hamiltonian Hi =
H (t < 0) and Zi = Tr[e−βHi ]. Iteratively diagonalizing initial-

and final-state Hamiltonians via the numerical renormaliza-

tion group (NRG) [36,42,43] yields the eigenstates and eigen-

values of Hi and H f on all energy scales and thereby allows

ρ̂ and the above trace to be calculated. This is accomplished

within the complete basis-set approach [22] and yields, within

the notation of Ref. [27],

O(t ) =
N

∑

m=m0

∑

rs/∈KK ′

ρ i→ f
sr (m)e−i(Em

s −Em
r )t Om

rs, (2)

in which m labels the iteration, running from the first iteration

m0 at which truncation occurs up to a maximum value of N , r

and s may not both be kept (K) states, Om
rs = f 〈lem|Ô|rem〉 f

are the final-state matrix elements of Ô at iteration m, Em
r are

eigenvalues at iteration m and ρ
i→ f
sr (m) =

∑

e f 〈sem|ρ̂|rem〉 f

is the initial-state density matrix projected onto the final states,

with
∑

e denoting the trace over the environment degrees of

freedom within the complete basis-set approach [22]. Within

the latter, the set of discarded states |lem〉 spans the Hilbert

state of all Wilson chains m = m0, . . . , N diagonalized, re-

sulting in the completeness relation

N
∑

m=m0

∑

le

|lem〉〈lem| = 1, (3)

where for m = N all states are counted as discarded (i.e., there

are no kept states at iteration m = N). By using the complete

basis set, the initial-state density matrix ρ̂ appearing in Eq. (2)

can be represented in terms of shell density matrices ρ̃m within

the full density matrix approach [44,45] as

ρ̂ =
N

∑

m=m0

wmρ̃m, (4)

with temperature-dependent weights wm determined via nor-

malization Tr[ρ̃m] = 1 (see Refs. [44,46] for details). With

the above notation, we proceed in the following sections to
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the calculation of two-time Green functions within TDNRG

which involve calculating expectation values of the form

〈Ô1(t1)Ô2(t2)〉ρ̂ where Ô1 and Ô2 are local operators, e.g., the

operators dσ and d†
σ in (1).

C. Parameter quench

Since the main interest in this paper is to compare the time-

dependent spectral functions resulting from different choices

of the time reference, we focus on a specific quench on the

model (1). We consider switching from a symmetric Kondo

regime with εi = −15Ŵ, Ui = 30Ŵ and a vanishingly small

Kondo scale T i
K = 3 × 10−8D = 3 × 10−5Ŵ to a symmetric

Kondo regime with ε f = −6Ŵ, U f = 12Ŵ and a larger Kondo

scale TK = 2.5 × 10−5D = 2.5 × 10−2Ŵ ≫ T i
K = 0.0012TK,

and a constant hybridization Ŵ ≡ πρ0(0)V 2 = 0.001D. Thus,

the quench is between two symmetric Kondo states with

different degrees of correlation.

D. Timescales

The relevant timescales describing the dynamics of the

model (1) following the quench specified above are the spin

fluctuation timescales τ i
K = h̄/kBT i

K and τK = h̄/kBTK of the

initial and final states, respectively, where T i
K and TK are

the corresponding initial- and final-state Kondo temperatures,

and the charge fluctuation timescale τc = h̄/Ŵ. The final-

state Kondo temperature TK is defined via the T = 0 spin

susceptibility χ0 via χ0 = (gµB)2/4kBTK, and similarly with

T i
K. In the limit of strong correlations Ui, f /πŴ ≫ 1, the Bethe

ansatz expression for χ0 yields to high accuracy the analytic

expression TK =
√

ŴU f /2e−πU f /8Ŵ+πŴ/2U f , and a similar ex-

pression for T i
K [47,48]. In the following, we set all physical

constants to unity, i.e., g = µB = kB = h̄ = 1, so expressions

such as tTK or tŴ should be interpreted, in terms of physical

units, as tkBTK/h̄ and tŴ/h̄, respectively.

III. DEFINITIONS AND GENERAL PROPERTIES

The two-time Green functions of interest to us in this

paper are the retarded Gr (t1, t2), advanced Ga(t1, t2), greater

G>(t1, t2), and lesser G<(t1, t2) Green functions, which are

defined as follows [49]:

Gr (t1, t2) = −iθ (t1 − t2)〈[dσ (t1), d†
σ (t2)]+〉ρ̂, (5)

Ga(t1, t2) = +iθ (t2 − t1)〈[dσ (t1), d†
σ (t2)]+〉ρ̂, (6)

G>(t1, t2) = −i〈dσ (t1)d†
σ (t2)〉ρ̂, (7)

G<(t1, t2) = +i〈d†
σ (t2)dσ (t1)〉ρ̂ . (8)

Consider the retarded two-time Green function Gr (t1, t2) =
−iθ (t1 − t2)〈[dσ (t1), d†

σ (t2)]+〉ρ̂ , where the time evolution of

the operators may refer to either Hi or H f , depending on

whether t1, t2 are before or after the quench (which occurs at

t1 = t2 = 0). In the absence of a quench, i.e., in equilibrium

Hi = H f = H , we have that Gr (t1, t2) = Gr (t1 − t2, 0) =
−iθ (t1 − t2)〈[dσ (t1 − t2), d†

σ (0)]+〉ρ̂ , which depends only on

the relative time t ′ = t1 − t2 and not explicitly on the individ-

ual times t1 and t2, and similarly for the other two-time Green

functions. Hence, in equilibrium one can define a unique

time-independent spectral function A(ω) = − 1
π

Im[Gr (ω +
iη)] with Gr (ω + iη) ≡

∫ +∞
−∞ dt ′ei(ω+iη)t ′

Gr (t ′) the Fourier

transform of the retarded two-time Green function Gr (t ′) ≡
Gr (t ′, 0) with respect to the relative time t ′ and η is a pos-

itive infinitesimal. In contrast, in the presence of a quench,

Gr (t1, t2) depends explicitly on both t1 and t2, and similarly for

the other two-time Green functions. Consequently, the Fourier

transform
∫ +∞
−∞ dt ′ei(ω+iη)t ′

Gr (t1, t2) of Gr (t1, t2) with respect

to t ′ = t1 − t2 yields a Gr (ω, t ) that can be considered to be a

function of either t = t1 (with t2 = t1 − t ′) or t = t2 (with t1 =
t2 + t ′) or any combination of these t = t (t1, t2). The resulting

spectral function A(ω, t ) = − 1
π

Im[Gr (ω + iη, t )] then has an

explicit dependence on the time “t .” The particular choice of t

(in terms of t1 and/or t2) results in different spectral functions

A(ω, t ), and in this paper we shall consider three choices t =
t1, t = t2, and t = (t1 + t2)/2. Physically, the different choices

describe different processes contributing to the respective

spectral functions. Thus, the choice t = t1 would correspond

to summing up the amplitudes of all processes in which a

particle is added to the system at some earlier time t2 < t1 = t

and then removed at the fixed time t = t1, while the choice

t = t2 would correspond to summing up the amplitudes of all

processes in which a particle is added at a fixed time t = t2
and is then removed at an arbitrary later time t1 > t2. The

choice t = (t1 + t2)/2 is the one encountered in time-resolved

photoemission spectroscopy [38,41] (see Sec. V), while the

choice t = t1 is encountered, for example, in time-dependent

transport through quantum dots [32,37]. The choice t = t2
has previously been considered [24,30] in the TDNRG to

time evolve spectral functions to infinite times, required,

for example, in the context of applications to steady-state

nonequilibrium transport within the scattering states NRG

approach [5]. Below, we derive expressions for A(ω, t ) for

the choices t = t1 and t = (t1 + t2)/2 within TDNRG and

compare these with the results for the case t = t2 studied in

Ref. [30].

Before proceeding, we note some general properties. From

the definitions (5)–(8), we have for all times t1, t2 [49]

Gr (t1, t2) − Ga(t1, t2) = G>(t1, t2) − G<(t1, t2) (9)

and, therefore, for any definition of the time, we also have the

following after applying the Fourier transform with respect to

the time-difference variable:

Gr (ω, t ) − Ga(ω, t ) = G>(ω, t ) − G<(ω, t ). (10)

In cases, where Gr (ω, t ) = [Ga(ω, t )]∗ is satisfied, Eq. (10)

can be used to define the time-dependent spectral function in

terms of the retarded and advanced Green functions, or the

lesser and greater Green functions, as

A(ω, t ) =
i

2π
[Gr (ω, t ) − Ga(ω, t )] (11)

=
i

2π
[G>(ω, t ) − G<(ω, t )], (12)

which are then also equivalent to the definition in terms of the

retarded Green function alone,

A(ω, t ) = −
Im[Gr (ω, t )]

π
. (13)
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The condition Gr (ω, t ) = [Ga(ω, t )]∗ is satisfied for

the case t = (t1 + t2)/2. To see this, we consider

the retarded and advanced Green functions in terms

of the relative (t ′ = t1 − t2) and average time t , i.e.,

Gr (t ′, t ) = −iθ (t ′)〈[dσ (t + t ′/2), d†
σ (t − t ′/2)]+〉ρ̂ and

Ga(t ′, t ) = +iθ (−t ′)〈[dσ (t + t ′/2), d†
σ (t − t ′/2)]+〉ρ̂ . It then

follows that [Ga(t ′, t )]∗ = Gr (−t ′, t ), which upon Fourier

transforming with respect to t ′ gives Gr (ω, t ) = [Ga(ω, t )]∗.

This allows a unique real spectral function to be defined

for arbitrary time t using either Eqs. (11) and (12) or (13).

In contrast, one cannot define the spectral function using

Eqs. (11) and (12) for the cases with time set to either t1
or t2 since then Gr (ω, t ) = [Ga(ω, t )]∗ is not guaranteed

to hold for all times t . In these cases, the time-dependent

spectral function is defined as in Eq. (13) in terms of

the imaginary part of the retarded Green function, i.e.,

A(ω, t ) = −Im[Gr (ω, t )]/π .

In equilibrium, Hi = H f , G<(ω) and G>(ω) are related to

the equilibrium spectral function A(ω) via

G<(ω) = 2π i f (ω)A(ω), (14)

G>(ω) = −2π i[1 − f (ω)]A(ω), (15)

where f (ω) is the Fermi function. Equations (14) and (15)

reflect the fluctuation-dissipation theorem relating correlation

functions (G< and G>) to dissipation [A(ω) ∝ Im[Gr (ω)]

[49]. In nonequilibrium, these relations no longer hold for

arbitrary times. Consider, for example, Eq. (14). Looking at

the expression for G<(ω, t ) and A(ω, t ) at the average time

t = (t1 + t2)/2 = 0 within an arbitrary complete basis set of

eigenstates |m〉i of Hi with eigenvalue Em and an arbitrary

complete set of eigenstates |m1〉 f of H f with eigenvalues Em1
,

we find

A(ω, t = 0)

=
∑

mnm1n1

i〈m|m1〉 f Bm1n1 f 〈n1|n〉iCnm

(e−βEm + e−βEn )

Zi

× δ

(

ω −
En1

− Em1

2
−

En − Em

2

)

, (16)

G<(ω, t = 0) = 2π i
∑

mnm1n1

i〈m|m1〉 f Bm1n1 f 〈n1|n〉iCnm

e−βEn

Zi

× δ

(

ω −
En1

− Em1

2
−

En − Em

2

)

. (17)

In the above, and throughout this paper, we set B = dσ and

C = d†
σ , with matrix elements denoted by Bm1n1

= 〈m1|B|n1〉
and Cmn = 〈m|C|n〉. From (16) and (17), one can directly ver-

ify that G<(ω, t = 0) = 2π i f (ω)A(ω, t = 0) is only satisfied

when |m〉i = |m1〉 f and Em = Em1
, which is equivalent to the

equilibrium case Hi = H f . This shows that the fluctuation-

dissipation theorem as expressed in Eq. (14) is not valid

in nonequilibrium. We return to Eq. (14) in Sec. V and in

Appendix D when we discuss thermalization in the long-time

limit.

IV. RETARDED GREEN FUNCTIONS AND SPECTRAL

FUNCTIONS FOR DIFFERENT TIME REFERENCES

In this section we give the TDNRG expressions for the

retarded Green function Gr (ω + iη, t ) for the three time ref-

erences t = t1, t = (t1 + t2)/2, and t = t2, at both positive

and negative times, and interpret the different expressions

physically (Sec. IV A). The derivation for the case t = t2 has

been given in detail elsewhere [50] and the derivations for

the other cases are similar, e.g., the derivation of the average-

time retarded Green function can be carried out following the

detailed derivation of the corresponding advanced Green func-

tion in Appendix A. Appendix B lists the TDNRG expressions

for the advanced, lesser, and greater Green functions for all

three time references. Numerical issues in the evaluation of

the resulting time-dependent spectral functions are discussed

in Sec. IV B. Finally, Sec. IV C compares the numerical results

for the spectral functions A(ω, t ) for the three time references.

A. Retarded Green function expressions

For positive times t = t1 > 0, we have in the notation of

Refs. [27,30] (see also Refs. [24,33])

Gr (ω + iη, t = t1 > 0) =
∑

m

{

/∈KK ′K ′′
∑

rsq

[

Bm
rsρ

i→ f
sq (m)ei(Em

q −Em
s )t + ρ i→ f

rs (m)ei(Em
s −Em

r )t Bm
sq

] Cm
qr

ω − Em
q + Em

r + iη
(1 − ei(ω−Em

q +Em
r +iη)t )

+
/∈KK ′K1K ′

1
∑

rsr1s1

Sm
rr1

Bm
r1s1

e
i(ω+Em

r1
−Em

s1
+iη)t

Sm
s1s

∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

ω − Em
s + Em

r + iη







, (18)

to be compared with the analogous expression at t = (t1 + t2)/2 > 0:

Gr (ω, t = (t1 + t2)/2 > 0)

=
∑

m

/∈KK ′K ′′
∑

rsq

ρ i→ f
rs (m)

[

Bm
sqCm

qr

(

ei(Em
s −Em

r )t − e2i[ω+Em
s −Em

q +iη]t
)

ω +
(

Em
s + Em

r

)

/2 − Em
q + iη

+
Cm

sqBm
qr

(

ei(Em
s −Em

r )t − e2i[ω−Em
r +Em

q +iη]t
)

ω −
(

Em
s + Em

r

)

/2 + Em
q + iη

]

+
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
r1rBm

rsS
m
ss1

∑

q Cm
s1qR̃m

qr1
e2i(ω+(Em

r −Em
s )+iη)t

ω +
(

Em
r − Em

s

)/

2 −
(

Em
s1

− Em
r1

)/

2 + iη
+

∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
r1rBm

rsS
m
ss1

∑

q R̃m
s1qCm

qr1
e2i(ω+(Em

r −Em
s )+iη)t

ω +
(

Em
r − Em

s

)/

2 −
(

Em
s1

− Em
r1

)/

2 + iη
, (19)
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and the expression for the case t = t2 > 0 [30],

Gr (ω + iη, t = t2 > 0)

=
∑

m

/∈KK ′K ′′
∑

rsq

ρ i→ f
sr (m)e−i(Em

s −Em
r )t

×

(

Bm
rqCm

qs

ω + Em
r − Em

q + iη
+

Cm
rqBm

qs

ω + Em
q − Em

s + iη

)

. (20)

In the above, ρ
i→ f
sq (m) is the full reduced density matrix of

the initial state projected onto the final states (here |s〉 and

|q〉), R̃m
qr is the full reduced density matrix of the initial state

[27] (i.e., q, r label initial states), and Sm
rr1

are overlap matrix

elements between initial and final states (whether r or r1 is

the initial state can be deduced by examining how the indices

appear in R̃ or ρ i→ f ).

All three expressions (18)–(20) yield the same final-state

Green function in the infinite-time limit (noting that many

terms decay to zero as e−ηt ),

Gr (ω + iη, t = +∞)

=
∑

m

/∈KK ′
∑

rs

Bm
rsC

m
sr

[

ρ
i→ f
ss (m) + ρ

i→ f
rr (m)

]

ω + Em
r − Em

s + iη
, (21)

and hence also the same final-state spectral function A(ω, t =
+∞) = −Im[Gr (ω, t = +∞)]/π in this limit.

At finite times, we can interpret the expressions (18)–(20)

physically as follows. Starting with Eq. (18) for t = t1 >

0 we note that the first term in square brackets, involving

final-state excitations at ω = Em
q − Em

r , describes, with in-

creasing time, the evolution toward the final state at t =
+∞ resulting in Eq. (21), while the last term, containing

initial-state excitations at ω = Em
s − Em

r and weighted by the

factor e−ηt , describes the decay of initial-state contributions

with increasing time. Similarly, for the average-time Green

function in Eq. (19) we see that the first term in square

brackets, involving final-state excitations at ω = ±[(Em
s +

Em
r )/2 − Em

q ], describes the evolution toward the final state

and results in Eq. (21) at t = +∞, while the last terms,

involving a sum of initial- and final-state excitations at ω =
−[(Em

r − Em
s )/2 − (Em

s1
− Em

r1
)/2] and weighted by the factor

e−2ηt , describe the decay of initial-state contributions with

increasing time. Finally, the single term in the Green function

for t = t2 in Eq. (20), containing only final-state excitations, is

seen to describe the evolution toward the final state at t = +∞
described by Eq. (21). Since both times are always positive

(i.e., t1 > t2 = t > 0) in arriving at Eq. (20), the influence

of the initial state on the positive time evolution is entirely

contained in the projected density matrix ρ
i→ f
sr (m).

We next consider the negative time expressions for the

retarded Green functions for the different time references.

For t = t1 < 0, we notice both times are always negative

(0 > t = t1 > t2), and hence the dynamics of the operators

dσ (t1) and d†
σ (t2), appearing in the definition of Gr (t1, t2), is

governed solely by the initial-state Hamiltonian. Therefore,

the expression for the spectral function at t < 0 for t = t1
is identical to the equilibrium initial-state spectral function,

which has no t dependence and is given by

Gr (ω, t = t1 < 0) =
∑

m

/∈KK ′
∑

rs

Bm
rs

∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

ω + Em
r − Em

s + iη
.

(22)

In contrast, the analogous expressions for the cases t = (t1 +
t2)/2 < 0 and t = t2 < 0 show a nontrivial dynamics also at

negative times. For t = (t1 + t2)/2 < 0, we have

Gr (ω, t = (t1 + t2)/2 < 0) =
∑

m

/∈KK ′
∑

rs

Bm
rs

∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

ω + Em
r − Em

s + iη
(1 − e−2i(ω+Em

r −Em
s +iη)t )

+
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

Bm
r1s1

Sm
s1s

∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

e−2i(ω−(Em
s −Em

r )+iη)t

ω +
(

Em
r1

− Em
s1

)

/2 −
(

Em
s − Em

r

)

/2 + iη
, (23)

while the expression for t = t2 < 0 has been derived in Ref. [30] and is given by

Gr (ω, t = t2 < 0) =
∑

m





/∈KK ′
∑

rs

Bm
rs(1 − e−i(ω+Em

r −Em
s +iη)t )

ω + Em
r − Em

s + iη
+

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

Bm
r1s1

Sm
s1se

−i(ω+Em
r −Em

s +iη)t

ω + Em
r1

− Em
s1

+ iη





∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

.

(24)

All three expressions (22)–(24) reduce to the initial-state

Green function at t = −∞ which is given by the time-

independent expression in Eq. (22), i.e.,

Gr (ω, t = −∞) =
∑

m

/∈KK ′
∑

rs

Bm
rs

∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

ω + Em
r − Em

s + iη
.

(25)

The structure of Eqs. (23) and (24) can be interpreted as

follows. The first terms in both expressions involving initial-

state excitations at ω = Em
s − Em

r describe the evolution to-

ward the initial-state Green function in Eq. (22) as t → −∞,

while the second terms in these expressions involving mixed

initial- and final-state excitations at ω = −[(Em
r1

− Em
s1

)/2 −
(Em

s − Em
r )/2] (weighted by e2ηt ) and final-state excitations

at ω = (Em
s1

− Em
r1

) (weighted by eηt ) describe the decay of

final-state contributions with increasing negative time. We

note also that the negative time Green function at t = t2 in

Eq. (24) resembles the positive time Green function for t = t1
in Eq. (18). Finally, as for the Green function at t = t2 [30],
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one can show that the retarded Green functions for the other

time references satisfy the spectral weight sum rule

−
∫ +∞

−∞

Im[Gr (ω, t )]

π
dω = 1. (26)

B. Numerical issues

Before presenting the numerical results for the spectral

functions at different time references, we first address two

numerical issues that arise in these calculations. First, in the

numerical evaluations of the time-dependent spectral func-

tions (Sec. IV C) a broadening procedure has to be applied

to the imaginary parts of the expressions (18)–(20) and (22)–

(24) in order to obtain smooth spectral functions A(ω, t )

from the discrete representations of the Green functions.

While the usual Gaussian or logarithmic-Gaussian schemes

[36,51,52] can be applied to (20) and (22), which have the

usual pole structure, a different procedure is required for the

other expressions (18), (19) and (23), (24). The reason is

that the latter expressions contribute to the imaginary part

of Gr (ω, t ) both a regular part (from the first terms in these

expressions) and also a set of delta functions (from the poles

in the second terms) (see also the discussion in Ref. [50].

In addition, the infinitesimal η in the expressions (18), (19)

and (23), (24) occurs also in the time-evolution factors in

the numerators. Its presence there is important in capturing

the growth/decay of final- and initial-state contributions as

discussed in detail above. A consistent scheme to evaluate

both the regular and pole contributions to the expressions (18),

(19) and (23), (24) is to set η to a small finite value throughout.

For the pole contribution, this approach would correspond to a

Lorentzian broadening scheme, so we shall henceforth denote

this scheme as the Lorentzian broadening approach to time-

dependent spectral functions. Specifically, we set η = η0|�E |
where �E = Em

p − Em
q is an excitation energy and η0 is the

broadening parameter, which is usually taken as η0 = 1/Nz

where Nz is the number of values used in the z-averaging

procedure [53,54]. For the remaining expressions (20) and

(22), the usual logarithmic-Gaussian broadening procedure

can be applied

δ(ω − �E ) →
e−η2

0/4

η0|�E |
√

π
e−[ln(|ω/�E |)/η0]2

.

The dependence of the results on η0 within the logarithmic-

Gaussian broadening is weak and values as large as η0 = 0.3

suffice for convergence (see Fig. 12 of Appendix C).2 For

the Lorentzian broadening scheme, the dependence of the

results on η0 is stronger and convergence with respect to η0

needs to be checked explicitly. From Appendix C, we show

that converged results are obtained by choosing η0 = 1/Nz

with Nz � 32, i.e., a broadening parameter η0 = 0.031 25 suf-

fices for converged results within the Lorentzian broadening

scheme.

A second issue in the evaluation of the average-time ex-

pressions (19) and (23) as well as the expressions for the lesser

2For the logarithmic-Gaussian broadening, the notation b = η0 is

also encountered in the literature.

Green functions (28) and (29) in Sec. V is the significant nu-

merical challenge in evaluating these expressions as compared

to the evaluation of the Green functions with time reference

t = t1 or t2. This is due to the summations over four different

indices in the former expressions, in which the appearance

of all the four indices in the denominators of these expres-

sions prohibits recasting these summations as matrix multi-

plications for efficient evaluation within the optimized Basic

Linear Algebra Subprograms (BLAS) package. For a given

calculation, the time consumption in calculating the terms

with four loops of the above kind is estimated to be about

100–200 times longer than calculating the terms with three

loops. In order to overcome this computational bottleneck and

to make the calculation of the four-loop terms feasible, we use

OpenMP parallelization, in which the total sum is divided into

smaller tasks calculated in individual threads [e.g., OpenMP

applied to the loop
∑

r in the last two terms of Eqs. (19)

and (23)]. These threads utilize common data and process the

different tasks in the resulting partial sums independently and,

hence, there is no overhead from communication between the

threads. Therefore, the time consumption decreases linearly

with increasing number of threads used in the paralleling

computation and makes the calculation of the average (and

lesser) Green functions feasible.

C. Comparison of spectral functions

for different time references

It is instructive to compare the results of this paper for the

spectral functions A(ω, t ) = −Im[Gr (ω, t )]/π at finite times

t = t1 and t = (t1 + t2)/2 with our previous results for the

same quantity and for the same quench on the Anderson

model described in Sec. II, but calculated at t = t2 [30].

Figure 1 compares the overall time evolution of these spectral

functions at the three time references t = t1 (top panels), at

t = (t1 + t2)/2 (middle panels), and at t = t2 (lower panels)

[30]. All cases exhibit both high-energy features (satellite

peaks) and a low-energy feature around the Fermi level, the

Kondo resonance (to which we shall return to below in more

detail). The presence of time evolution at negative times for

the cases of average time [Fig. 1(c)] and for t = t2 [Fig. 1(e)]

and its absence for the case t = t1 [Fig. 1(a)] is clearly visible.

The nontrivial dynamics at negative times for the former cases

does not violate causality. It simply reflects the fact that upon

Fourier transforming Gr (t1, t2) with respect to t ′ = t1 − t2 > 0

to obtain A(ω, t ) one picks up contributions from both initial

states (when 0 > t1 > t2 = t) and final states (when t1 > 0 >

t2 = t). A common feature of all three spectral functions

is that the largest rearrangement of spectral weight, which

is associated with a shift of the satellite peaks from ω =
εi

d (and εi
d + U i

d = −εi
d ) to ω = ε

f

d
(and ε

f

d
+ U

f

d
= −ε

f

d
),

occurs on timescales |t | � 1/Ŵ, occurring at positive times for

the case t = t1 [Fig. 1(b)], at negative times for the case t = t2
[Fig. 1(e)], and at both positive and negative times −1/Ŵ �
t � +1/Ŵ for the average-time spectral function [Figs. 1(c)

and 1(d)]. We note that the shift of the satellite peaks to

their final-state positions for the average-time spectral func-

tion occurs in two stages, with half the shift occurring at

negative times and the remaining shift occurring at positive

times. Another common feature of all three spectral functions
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FIG. 1. Time evolution of the normalized spectral function

πŴA(ω, t ) vs tTK from negative times (left panels) to positive times

(right panels) for the symmetric Anderson model subject to a quench

at t = 0 specified by εi = −15Ŵ,Ui = 30Ŵ and ε f = −6Ŵ,U f =
12Ŵ with final-state Kondo temperature TK = 2.5 × 10−5D = 2.5 ×
10−2Ŵ, and on a linear frequency scale. Top panels (a) and (b) use as

time reference t = t1, middle panels (c) and (d) use t = (t1 + t2)/2,

and lower panels (e) and (f) use t = t2. Dashed lines mark tŴ = ±1

(tTK = ±10−1). The spectral function at negative time is time inde-

pendent for t = t1 (top panels) and time dependent for t = (t1 + t2)/2

(middle panels) and t = t2 (lower panels). The high-energy satel-

lite peaks shift from their initial-state values (ω = ±εi = ±15Ŵ ≈
±600TK) to their final-state values (ω = ±ε f = ±6Ŵ ≈ ±240TK)

in the positive time range 10−3/TK < t < 2.5 × 10−2/TK = 1/Ŵ for

t = t1 (top panels), in a similar negative time range for t = t2 (lower

panels) and in both the above time ranges for t = (t1 + t2)/2 (middle

panels). The TDNRG calculations use a discretization parameter

� = 4, z averaging [53,54] with Nz = 32 and a cutoff energy Ecut =
24. Results for t = t2 in (e) and (f) are from Ref. [30] and are included

here for the purpose of comparison.

is that, while they all obey the spectral weight sum rule

(26) exactly, analytically, at all times, and to high accuracy

numerically [50], they nevertheless also exhibit regions of

negative spectral weight for certain time ranges. This occurs

in all cases in the time range where the largest amount of

spectral weight is being rearranged, i.e., for 0 < t � +1/Ŵ

in the case t = t1 [Fig. 1(b)], at −1/Ŵ � t < 0 for the case

t = t2 [Fig. 1(e)], and in the time range −1/Ŵ � t � +1/Ŵ

for the average-time spectral function [Figs. 1(c) and 1(d)].

These regions of negative spectral weight occur mainly in

the frequency range above the satellite peaks in the first case

[Fig. 1(b)], predominantly in the frequency range between the

satellite peaks in the last case [Fig. 1(e)], and both between

and above the satellite peaks in the second case [Figs. 1(c)

and 1(d)].

Representative cuts of the spectral function from Fig. 1

at long negative (tTK = −104) and positive (tTK = +104)

times as well as at tTK = 0 are shown in Fig. 2 for all three

time references and illustrate the recovery of the initial- and
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FIG. 2. Cuts of the spectral function in Fig. 1 at selected (fixed)

times tTK = −104 (left panels), tTK = 0 (middle panels), and tTK =
+104 (right panels). Top panels refer to t = t1, middle panels to

t = (t1 + t2)/2, and lower panels to t = t2 [30]. Initial-state εi =
−15Ŵ ≈ −600TK and final-state ε f = −6Ŵ ≈ −240TK positions of

the local level are indicated with vertical dotted-dashed and dashed

lines, respectively. Results for t = t2 in (g)–(i) are from Ref. [30] and

are included here for the purpose of comparison.

final-state spectra at long negative/positive times. At tTK = 0,

one sees that the satellite peaks for the average-time spectral

function [Fig. 2(e)] lie halfway between the initial-state (verti-

cal dotted-dashed lines) and final-state (vertical dashed lines)

values.

We also note that while the positions of the two satellite

peaks acquire their expected final-state values by time t �
+1/Ŵ, or earlier for the case t = t2, their detailed structure

continues to vary at longer timescales, reflecting the drawing

of spectral weight from these high-energy satellite peaks to

lower energies in the process of building up the final-state

Kondo resonance, which only full develops at the much longer

timescale t � 1/TK, as we describe next.

The evolution of the Kondo resonance at positive times

shows important differences for the spectral functions defined

using the three different time references. In order to elucidate

these differences, we show in Fig. 3 all three spectral functions

at just positive times and on a logarithmic frequency scale in

order to better resolve the time evolution of the exponentially

narrow Kondo resonance. Representative cuts of the spectral

function from Fig. 3 at tTK = 0.001, 1, and 1000 are shown

in Fig. 4 for all three cases.

We compare first the cases t = t1 [Figs. 3(a) and 4(a)–4(c)]

and t = t2 [Figs. 3(c) and 4(g)–4(i)]. Since in the former case

[Eq. (18)], time evolution from the initial state only starts

at t = 0, we see in Fig. 3(a) [and in Fig. 4(a)] signatures

of the initial-state Kondo resonance already at early times

t < 10−1/TK, whose width is also significantly smaller than

that of the final-state Kondo resonance. For t > 10−1/TK

one sees a crossover to a broader structure which eventually
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FIG. 3. πŴA(ω > 0, t ) vs tTK at positive times, as in Fig. 1 (right

panels), but on a logarithmic scale for both time and frequency,

and for the same quench: (a) t = t1; (b) t = (t1 + t2)/2; (c) t =
t2. The strong time dependence of the Kondo resonance around

ω = 0 is clearly visible in each case, while that of the high-energy

satellite peak is more clearly resolved on the linear frequency scale

of Fig. 1. Signatures of the initial-state Kondo resonance of width

T i
K = 0.0012TK are visible in (a) for t = t1, and partially in (b) for t =

(t1 + t2)/2 at short times, whereas for t = t2 in (c) the initial-state

Kondo resonance is absent at short times and instead one observes

a preformed final-state Kondo resonance of width TK . Results for

t = t2 in (c) are from Ref. [30] and are included here for the purpose

of comparison.

develops into the fully fledged final-state Kondo resonance

on timescales t � 1/TK with a width which is clearly set

by the final-state Kondo scale TK [see also Figs. 4(b) and

4(c)]. This evolution is clearly different from that of the

spectral function with time taken as t = t2 [Fig. 3(c) and

lower panels of Fig. 4]. In the latter, the satellite peaks have

already acquired their final-state values by t = 0 and, hence,

a structure of width equal to the final-state Kondo scale TK

is already discernible on this early timescale [Figs. 3(c) and

4(g)]. The subsequent evolution of this structure, or preformed

Kondo resonance, to its fully fledged one occurs, not via a

change in its width as in the case t = t1, but rather by the

filling in of the absent spectral weight around the Fermi level

at |ω| ≪ TK. This occurs on a timescale t � 1/TK [Figs. 4(h)

and 4(i)]. For the average-time spectral function [Figs. 3(b)

and 4(d)–4(f)], we see that while signatures of the initial-

state Kondo resonance are present at early times t → 0, the
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FIG. 4. Cuts of the spectral function in Fig. 3 at selected (fixed)

times tTK = 0.001 (left panels), tTK = 1 (middle panels), and tTK =
1000 (right panels). Top panels refer to t = t1, middle panels to t =
(t1 + t2)/2, and lower panels to t = t2. Results for t = t2 in (g)–(i) are

from Ref. [30] and are included here for the purpose of comparison.

width of this feature is intermediate between the initial- and

final-state Kondo scales [Fig. 4(d)], consistent with the fact

that the satellite peaks have only shifted halfway toward their

final-state values by time t = 0. The subsequent evolution

of the Kondo resonance for average time occurs both via an

increase in its width toward TK (similar to the case t = t1 in

Sec. IV) and via filling in of states around the Fermi level

in the region |ω| � TK on a timescale t � 1/TK [Fig. 4(e)].

We also notice from Fig. 3(b) that the transition to the fully

developed Kondo resonance occurs rather sharply and within

a decade in time on approaching 1/TK. In contrast, the Kondo

resonance for the cases t = t1 and t2 develops over a somewhat

wider time range. Finally, in Figs. 3(a)–3(c) one clearly sees

how the evolution of the satellite peaks to their final-state

positions, and the associated spectral weight rearrangement,

leads to weight being transferred from high to low energies

in the process of building up the final-state Kondo resonance

[diagonal and vertical stripes, particularly evident in Figs. 3(a)

and 3(b)].

We comment also on the small additional structures within

the Kondo resonance which remain to long times t = 1000/TK

[Figs. 4(c), 4(f), and 4(i)]. These have been described else-

where [30] and are in part due to the use of a Wilson chain

in the TDNRG calculations [25,26,55] and in part due to the

broadening procedure (see Appendix C).

The spectral function at average time exhibits nontrivial

time evolution also at negative times. Hence, it is of interest

to compare this with that of the spectral function with time

reference t = t2, which also exhibits nontrivial time evolution

at negative times. The comparison is shown in Fig. 5 on

a logarithmic frequency scale in order to resolve the time

evolution of the initial-state Kondo resonance. We see that

in both cases, an initial-state Kondo resonance of width
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FIG. 5. πŴA(ω > 0, t ) vs tTK at negative times using a log-

arithmic scale for both time and frequency. (a) Spectral function

using t = (t1 + t2)/2, (b) spectral function using t = t2. The use of

a logarithmic frequency scale allows the decay of the initial-state

Kondo resonance on the timescale tT i
K = −1 and its evolution toward

an incipient final-state Kondo resonance at tTK = −1 to be clearly

seen. The time evolution of the high-energy satellite peaks, also

visible, are more clearly seen on the linear frequency scale of Fig. 1.

Results for t = t2 in (b) are from the Supplemental Material of

Ref. [30] and are included here for the purpose of comparison.

T i
K = 0.0012TK is present at large negative times t → −∞.

In both cases, this initial-state Kondo resonance decays on

times of order t = −1/T i
K and for times t between −1/T i

K

and −1/TK continues to lose spectral weight, with the weight

being drawn into a new feature of width TK which can be

identified as the incipient final-state Kondo resonance whose

main time evolution occurs at positive times [see Figs. 3(b)

and 3(c)]. We also note that the latter feature, in both cases,

draws spectral weight from the decaying initial-state Kondo

resonance, as seen by the diagonal stripes in the figure, and

also from the high-energy satellite peaks, as seen by the al-

most vertical stripes emanating from the high-energy features

for times t � −1/Ŵ.

Summarizing this section, we see that the time evolution of

the spectral function clearly depends on whether we chose t =
t1, t = (t1 + t2)/2, or t = t2 in its definition. While the first

case only exhibits time evolution for positive times, the latter

cases show nontrivial time evolution also for negative times.

However, all spectral functions exhibit the charge and spin

fluctuation timescales t ≈ ±1/Ŵ and 1/TK for the evolution

of the high- and low-energy features, respectively, and they

all exhibit regions of negative spectral density on timescales

where the largest spectral weight is being rearranged, while

the spectral sum rule is satisfied in each case at all times.

In addition, all definitions recover the same equilibrium

initial- and final-state spectral functions in the limits t →
−∞ and t → +∞, respectively. In the following section,

we consider the lesser Green function at the average time

t = (t1 + t2)/2, which yields information about the occupied

density of states and is closely related to the spectral function

at average time and to the time- and energy-resolved photoe-

mission current in pump-probe time-resolved photoemission

spectroscopy.

V. LESSER GREEN FUNCTION AND TIME-RESOLVED

PHOTOEMISSION CURRENTS

A direct measurement of the time evolution of the single-

particle spectral function as a sum over paths of amplitudes

in which a particle is added at a certain time and removed at

a later time, is actually not possible experimentally. Instead,

one proceeds via time-resolved photoemission spectroscopy

using a pump-probe technique [8,56,57]. This measures the

energy-resolved photoelectron current intensity I (E , td ) as a

function of the energy of the photoemitted electrons E and

the delay time td between the probe and the pump pulses.

The pump at time t = 0 puts the system in a nonequilibrium

excited state and corresponds to the quench in our system,

while the probe generates a photoelectron current at time

td . The theory of time-resolved photoemission, relating the

intensity I (E , td ) to Green functions, involves a number of

approximations (see Refs. [38–41] for details). For a Gaussian

probe pulse s(t ) = exp(−t2/2�t2) of width �t , the photoe-

mission current intensity takes the form [38–41]

I (E , td ) ∼
∫

dω dt N (ω, t )e
− (t−td )2

�t2 e
− (ω−E )2

�E2 . (27)

Here, N (ω, t ) =
∫

dτ
2π i

eiωτ G<(t + τ
2
, t − τ

2
)=G<(ω, t )/(2π i)

is the Fourier transform of the lesser Green function de-

fined at the average time G<(t1, t2) = i〈d†
σ (t2)dσ (t1)〉 with

t1 = t + τ/2 and t2 = t − τ/2 and �E = 1/�t reflects the

tradeoff between the time resolution and the energy resolu-

tion, which resembles the quantum mechanical time-energy

uncertainty. Hence, a measurement of I (E , td ) measures the

time-dependent occupied density of states N (E , td ) convo-

luted with a Gaussian of width �t in time and a Gaussian of

width �E = 1/�t in energy. By analogy to the equilibrium

case, where N (ω, t ) reduces to the time-independent occupied

part of the spectral function f (ω)A(ω) [see Eq. (14)], which

can be measured by standard photoemission spectroscopy, a

measurement of I (E , td ) with time-resolved photoemission

gives information on the occupied part of the time-dependent

spectral function [see Eq. (12)].

In the following, we first present the result for the lesser

Green function at average time within TDNRG (Sec. V A),

discussing also its physical structure, and then use this to cal-

culate the time-dependent occupied density of states N (ω, t )

in Sec. V B. In Sec. V C we also present results for the time-

resolved photoemission current I (E , td ) and investigate the

effect of using different widths of the Gaussian probe pulse

on the time evolution and observability of spectral features in

N (ω, t ).
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A. Lesser Green function

In order to calculate N (ω, t ) = G<(ω,t )

2π i
, we require the expression for the lesser Green function at average time within the

TDNRG. For positive average time t we find

G<(ω, t = (t1 + t2)/2 > 0) =
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

Cm
rsB

m
sq

e−i(Em
q −Em

r )t − e−2i(ω+Em
s −Em

r )t e−2ηt

ω + Em
s − Em

q +Em
r

2
− iη

ρ i→ f
qr (m)

−
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

Cm
rsB

m
sq

e−i(Em
q −Em

r )t − e2i(ω+Em
s −Em

q )t e−2ηt

ω + Em
s − Em

q +Em
r

2
+ iη

ρ i→ f
qr (m)

+
N

∑

m=m0

/∈KK ′K1K ′
1

∑

rsr1s1

Cm
rse

−2i(ω−Em
r +Em

s )t e−2ηt
Sm

ss1

∑

q Bm
s1qR̃m

qr1
Sm

r1r

ω − Em
r −Em

s +Em
r1

−Em
s1

2
− iη

−
N

∑

m=m0

/∈KK ′K1K ′
1

∑

rsr1s1

Bm
rse

2i(ω+Em
r −Em

s )t e−2ηt
Sm

ss1

∑

q R̃m
s1qCm

qr1
Sm

r1r

ω + Em
r −Em

s +Em
r1

−Em
s1

2
+ iη

, (28)

while for negative average time t , we find

G<(ω, t = (t1 + t2)/2 < 0) =
N

∑

m=m0

/∈KK ′
∑

rs

Bm
rs

1 − e2i(ω+Em
r −Em

s )t e2ηt

ω + Em
r − Em

s − iη

∑

q

R̃m
sqCm

qr −
N

∑

m=m0

/∈KK ′
∑

rs

Bm
rs

1 − e−2i(ω+Em
r −Em

s )t e2ηt

ω + Em
r − Em

s + iη

∑

q

R̃m
sqCm

qr

+
N

∑

m=m0

/∈KK ′K1K ′
1

∑

rsr1s1

Cm
rse

2i(ω−Em
r1

+Em
s1

)t
e2ηt

Sm
ss1

∑

q Bm
s1qR̃m

qr1
Sm

r1r

ω − Em
r −Em

s +Em
r1

−Em
s1

2
− iη

−
N

∑

m=m0

/∈KK ′K1K ′
1

∑

rsr1s1

Bm
rse

−2i(ω+Em
r1

−Em
s1

)t
e2ηt

Sm
ss1

∑

q R̃m
s1qCm

qr1
Sm

r1r

ω + Em
r −Em

s +Em
r1

−Em
s1

2
+ iη

. (29)

The derivations of these expressions are similar to those for the advanced Green function, which is given in detail in

Appendix A.

As for the retarded Green functions at average time in Eqs. (19)–(23) of Sec. IV, the lesser Green functions here also consist

of two types of terms: the first two lines of (28) and the first line of (29) are regular, involving final-state (initial-state) excitations

for t > 0 (t < 0), while the last two lines consist of poles at sums of initial- and final-state excitations (weighted by e−2η|t |).
The latter, decaying as e−2η|t | with increasing t , describe the decay of initial- and final-state contributions in the limits t → +∞
and t → −∞, respectively. In the infinite past, Eq. (29) recovers the expression for the lesser Green function of the initial

state

G<(ω, t → −∞) =
N

∑

m=m0

/∈KK ′
∑

rs

Bm
rs

1

ω + Em
r − Em

s − iη

∑

q

R̃m
sqCm

qr −
N

∑

m=m0

/∈KK ′
∑

rs

Bm
rs

1

ω + Em
r − Em

s + iη

∑

q

R̃m
sqCm

qr

=
N

∑

m=m0

/∈KK ′
∑

rs

Bm
rs

2iη
(

ω + Em
r − Em

s

)2 + η2

∑

q

R̃m
sqCm

qr, (30)

while in the infinite future, Eq. (28) reduces to the final-state lesser Green function

G<(ω, t → +∞) =
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

Cm
rsB

m
sq

δqr

ω + Em
s − Em

q +Em
r

2
− iη

ρ i→ f
qr (m) −

N
∑

m=m0

/∈KK ′K ′′
∑

rsq

Cm
rsB

m
sq

δqr

ω + Em
s − Em

q +Em
r

2
+ iη

ρ i→ f
qr (m)

=
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

Cm
rsB

m
sq

2iηδqr
(

ω + Em
s − Em

q +Em
r

2

)2 + η2
ρ i→ f

qr (m). (31)

The continuity at t = 0 is fulfilled as G<(ω, t = 0+) =
G<(ω, t = 0−) can be derived directly from Eqs. (28) and

(29).

B. Results for the time-resolved occupied density of states

Figure 6 shows the time evolution of the normalized occu-

pied density of states πŴN (ω, t ) = ŴG<(ω, t )/2i at selected
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FIG. 6. The normalized occupied density of states πŴN (ω, t ) =
ŴG<(ω, t )/(2i) vs ω for different values of the average time t ,

with the finite-t curves offset vertically by increments of ±0.15 (for

positive/negative times) relative to the t = 0 curve. The dashed lines

mark ω = εi
d , (εi

d + ε
f

d )/2, and ε
f

d . The high-energy satellite peak

starts to shift from ω = εi
d at t = −2.5 × 10−2/TK = −1/Ŵ to ω =

(εi
d + ε

f

d )/2 at t = −10−4/TK , and to shift from ω = (εi
d + ε

f

d )/2

at t = 10−4/TK to ω = ε
f

d at t = 2.5 × 10−2/TK = 1/Ŵ. TDNRG

parameters as in Fig. 1.

times from the distant past to the far future for the same

quench on the Anderson model as used in the previous sec-

tions, i.e., a quench on the symmetric Anderson model from

Ui = 30Ŵ to U f = 12Ŵ. For an an overview of the behavior

of πŴN (ω, t ) at all times, see also Figs. 7(a) and 7(b) in

Sec. V C.
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FIG. 7. Top panels (a) and (b) are πŴN (ω, t ) vs time tTK and

frequency ω/TK on logarithmic scales. Lower panels (c)–(h) are

πŴI (E , td ) vs the delay time td TK and the energy E/TK also on log-

arithmic scales. Anderson model quench as in Fig. 1. Panels (c) and

(d) are the photoemission current for the short width of probe pulse

�t = 1/|ε f

d | ≈ 1/240TK. Panels (e) and (f) are the photoemission

current for the medium width of probe pulse �t = 1/Ŵ ≈ 1/40TK.

Panels (g) and (h) are the photoemission current for the long width

of probe pulse �t = 1/TK. Vertical dashed lines indicate tŴ = ±1 in

(a) and (b) and tdŴ = ±1 in the other panels.

The occupied density of states clearly starts to evolve

already at negative times, with the initial-state Kondo res-

onance decaying on a timescale tT i
K � −1, i.e., for tTK �

−TK/T i
K ≈ −103 (using T i

K = 0.0012TK). This decay is more

clearly visible in Fig. 7(a). In the process, spectral weight from

the initial-state Kondo resonance and from the high-energy

satellite peak is drawn in to form a feature on a scale TK ≫ T i
K

about the Fermi level [see, for example, the curve for t =
−10−2/TK or Fig. 7(a)]. The further time evolution of this

feature leads to the buildup of the fully developed final-state

Kondo resonance at the Fermi level for times t � 1/TK. In

addition to the above low-energy changes in N (ω, t ), which

extend to long times of order 1/TK or 1/T i
K, we also observe

large changes in N (ω, t ) at high energies, occurring mainly on

the short timescale |t | � 1/Ŵ: namely, the high-energy satel-

lite peak at ω = εi
d at t = −2.5 × 10−2/TK = −1/Ŵ shifts

first to ω = (εi
d + ε

f

d
)/2 at t = −10−4/TK = −0.004/Ŵ, and

then from ω = (εi
d + ε

f

d
)/2 at t = 10−4/TK = 0.004/Ŵ to its

final-state value ω = ε
f

d
at t = 2.5 × 10−2/TK = 1/Ŵ (see

vertical dashed lines in Fig. 6).

We note that, as for the spectral functions A(ω, t ) defined

via the retarded Green function in Sec. IV C, we also observe

for N (ω, t ) regions of negative spectral weight in certain time
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ranges, and particularly in the time range −1/Ŵ � t � +1/Ŵ

where most of the spectral weight rearrangement takes place

as a result of the shift of the satellite peaks from their initial-

to their final-state positions. Such regions of negative spectral

weight, for certain time ranges, are also observed in other

systems [37,38,58]. Another feature of Fig. 6 is the significant

spectral weight at positive energies and long times (t → ∞),

even though the calculation is at T = 0. We considered two

possibilities for this behavior. First, the use of a too large

broadening η in the Lorentzian broadening procedure for

(28) could result in a finite spectral weight at ω > 0, even

at long times. This is because the long tails of Lorentzians

can result in negative energy excitations contributing to the

spectrum at ω > 0. However, as we show in Appendix C, this

is not the case here, as the broadening used gives converged

results for N (ω, t ). The extent of the spectral weight at

ω > 0 for t → +∞, given that T = 0, rather suggests that

the system has not perfectly equilibrated at long times, i.e.,

N (ω, t → +∞)/A(ω, t → ∞) �= f (ω) where f (ω) is the

equilibrium Fermi function at T = 0. In Appendix D we

show that instead N (ω, t → +∞)/A(ω, t → ∞) follows,

at low frequencies ω, approximately a Fermi function

feff (ω) with a small effective temperature Teff ≈ TKŴ/D,

which is independent of the initial state. Such an imperfect

thermalization at long positive times is expected within

the single-quench TDNRG approach [30]. A more precise

description of the thermalization at infinite time can be

achieved within the multiple-quench TDNRG approach [31].

C. Results for the time-resolved photoemission current

The lower panels of Fig. 7 show the time evolution of

the photoemission current intensities I (E , td ) calculated with

three different widths of the probe pulse. For comparison, we

also show the time evolution of the occupied density of states

N (ω, t ) [top panels Figs. 7(a) and 7(b)]. We focus here on

I (E , td ) (lower panels) and refer the reader to the description

of Fig. 6 given in Sec. V B for a more detailed description

of the time evolution of N (ω, t ). We just note, concerning the

latter, that N (ω, t ) in Figs. 7(a) and 7(b) also exhibit signatures

of the timescales tŴ = 1, tTK = 1, and tT i
K = 1, just as in the

case of the retarded spectral function A(ω, t ) in Figs. 3(b) and

5(a): namely, signatures of the initial-state Kondo temperature

at tT i
K ≈ −1 in Fig. 7(a) and signatures of Ŵ and TK at tŴ ≈ 1

(vertical dashed line) and tTK = 1, respectively, in Fig. 7(b).

Figures 7(c) and 7(d) show the photoemission current

intensity I (E , td ) calculated with an ultrashort probe pulse

of width �t = 1/|ε f

d
| ≈ 1/240TK (3.18 fs for TK = 10 K).

The probe-pulse width here is short enough to capture the

high-energy satellite peak evolving continuously from εi
d to

ε
f

d
, but as a result of the low-energy resolution �E = 1/�t ≫

TK entering the Gaussian in Eq. (27) the low-energy Kondo

resonance feature in N (ω, t ) can not be resolved. On the other

hand, measurements using longer pulse widths in Figs. 7(e)–

7(h), are able to see signatures of the low-energy Kondo

resonance, but the lack of time resolution does not allow to

capture the detailed time evolution of the high-energy satellite

peak from initial- to final-state positions. Instead, one sees the

initial-state peak at long negative delay times and the final-

state peak at long positive delay times, while at short delay
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FIG. 8. (a) Sketch of the pump and probe pulses, with td the

delay time. (b)–(d) Cuts of the normalized photoemission currents

πŴI (E , td ) in Fig. 7 for specific delay times td TK , and vs E/TK

on a linear scale. The values of |td TK| are given by the color

(grayscale) box on the right. From (b) to (d), the photoemission

currents are calculated with increasing width of the probe pulse:

(b) �t = 1/|ε f

d | ≈ 1/240TK, (c) �t = 1/Ŵ ≈ 1/40TK, and (d) �t =
1/TK. The arrows represent the time evolution of the two peaks at εi

d

and ε
f

d from negative to positive delay times td TK .

times signatures of both peaks appear in the photoemission

current. This is seen for the probe pulse with the longest width

�t = 1/TK (763.8 fs for TK = 10 K), in panels 7(g) and 7(h),

where both initial- and final-state satellite peaks are present in

the signal for delay times ranging from td TK ≈ −1 to 1, and

the low-energy Kondo resonance is clearly resolved.

For further insights on the effect of the pulse width on the

time evolution of the spectral features we examine cuts of

I (E , td ) at specific delay times td vs E/TK on a linear energy

scale in Figs. 8(b)–8(d). The pump (quench) and probe pulses

are shown schematically in Fig. 8(a). The photoemission

current in Figs. 8(b)–8(d) is calculated for increasing width

of the probe pulses as follows: (b) �t = 1/|ε f

d
| ≈ 1/240TK

(3.18 fs for TK = 10 K), (c) �t = 1/Ŵ ≈ 1/40TK (19.1 fs for

TK = 10 K), and (d) �t = 1/TK (763.8 fs for TK = 10 K).
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One sees that for finite delay times around zero, the pump

and probe pulses can overlap each other. Therefore, there are

a finite range of delay times, depending on the probe pulse-

width, such that features of both the initial and final states

appear at the same time, as can be observed, for example,

in Figs. 8(c) and 8(d). On the other hand, one sees that the

width of the probe pulse acts qualitatively like an effective

temperature, with the smaller the pulse width, the larger the

effective temperature and vice versa. This again reflects the

time-energy uncertainty relation �E = 1/�t since shorter

pulses have the effect of smearing spectral features N (ω, t )

in the process of extracting I (E , td ) [see Eq. (27)]. Therefore,

in Fig. 8(b), the high-energy satellite peaks are low and

overbroadened, while in Figs. 8 (c) and 8(d), the high-energy

satellite peaks are sharper. While the energy resolution �E =
Ŵ in Fig. 8(c) is not sufficient to fully resolve the Kondo

resonance, nevertheless, a signal of the Kondo resonance

below the Fermi level is clearly seen. Finally, in Fig. 8(d),

when the pulse width is on the scale of the Kondo temperature,

the Kondo resonance is well resolved.

VI. CONCLUSIONS

In this paper, we investigated several possible definitions

for the time-dependent spectral function A(ω, t ) of the Ander-

son impurity model, subject to a sudden quench, and within

the TDNRG approach. In terms of the retarded (or any other)

two-time Green function Gr (t1, t2), one has a choice in defin-

ing the time t in terms of t1 and/or t2 before carrying out the

Fourier transform with respect to the relative time t ′ = t1 − t2
to obtain Gr (ω, t ) and, hence, A(ω, t ) = −Im[Gr (ω, t )/π ].

Choosing t = t1 yields a spectral function which is time

independent for times t before the quench at t = 0, being

then identical to the equilibrium initial-state spectral function,

while having a nontrivial time evolution at positive times after

the quench. This spectral function appears in the context of

time-dependent transport through quantum dots with time-

dependent parameters [37], but is not a directly measurable

observable in that context, since it only appears in expressions

for transient currents. The choice t = t2 [24,30], motivated

by applications for extracting steady-state nonequilibrium

spectral functions [5], exhibits nontrivial time evolution at

both negative and positive times [30]. The choice t = t1+t2
2

results in a time-dependent spectral function A(ω, t ) which

is close to that measured in time-resolved photoemission

spectroscopy, which measures the time-dependent occupied

density of states N (ω, t ) = G<(ω, t )/(2π i), which makes up

a part of the average-time spectral function [see Eq. (12)].

In the context of the experiment, the average time here is

identified as the delay time between the pump and the probe

pulses. For the quench that we studied in detail, in which

the Coulomb interaction in the symmetric Anderson model

is reduced from Ui = 30Ŵ in the initial state to U f = 12Ŵ

in the final state, we find that, in all cases, the final-state

Kondo resonance in A(ω, t ) is only fully developed for times

t � 1/TK, while the largest rearrangement of spectral weight,

associated with the high-energy satellite peaks shifting from

their initial- to final-state values, occurs on a time |t | of

order 1/Ŵ. However, whereas this shift occurs largely around

t = −1/Ŵ for the choice t = t2, and largely around t = +1/Ŵ

for the choice t = t1, for the average-time spectral function,

it occurs in two stages between t = −1/Ŵ and 0 and between

t = 0 and +1/Ŵ.

In addition to deriving expressions for A(ω, t ) =
−Im[Gr (ω, t )/π ] for different time references, we also

derived expressions within TDNRG for the advanced,

lesser, and greater Green functions for the same time

references. This allowed us to explicitly verify that for

average times [Ga(ω, t )]∗ = Gr (ω, t ) and that G>(ω, t )

and G<(ω, t ) are purely imaginary, properties that allow a

real time-dependent spectral function to be defined as in

equilibrium via A(ω, t ) = i
2π

[Gr (ω, t ) − Ga(ω, t )] as well as

via Eqs. (11) and (12). In contrast, the above properties are

not generally satisfied for the other choices of time reference,

for which the definition in terms of the imaginary part of

the retarded Green functions is more appropriate. Ultimately,

however, the experimental context dictates which definition

applies.

We investigated the average-time lesser Green function,

which yields the time-dependent occupied density of states

N (ω, t ) = G<(ω, t )/(2π i), which in equilibrium reduces to

f (ω)A(ω), and which is closely related to the photoemission

current I (E , td ) measured in time-resolved photoemission

spectroscopy [Eq. (27)]. N (ω, t ) was also found to have a

nontrivial time evolution at both positive and negative average

times as for the spectral function with t = (t1 + t2)/2. While

the main spectral weight in N (ω, t ) at T = 0 was found to

be below the Fermi energy at all times, a small occupation

of states above the Fermi level, which persisted to infinite

times, was also found. We found that at low frequencies ω

close to the Fermi level an effective Fermi function feff (ω) =
N (ω, t → +∞)/A(ω, t → ∞) with a small effective tem-

perature Teff ≈ ŴTK/D, independent of the initial state, was

consistent with the data. This imperfect thermalization within

the single-quench TDNRG approach can be attributed to the

discrete Wilson chain representation of the conduction elec-

tron bath [55] and can be reduced within a multiple-quench

TDNRG approach [31].

Finally, in terms of the application of our results to time-

resolved photoemission spectroscopy, we calculated the pho-

toemission current I (E , td ) from the occupied density of states

N (ω, t ) via Eq. (27), and investigated the observability and

the time evolution of spectral features in the photoemission

current for Gaussian probe pulses of different widths. While

ultrashort probe pulses yield better time resolution for the

high-energy features at early times, they also yield less energy

resolution and can miss features close to the Fermi energy.

Calculations with three different values of pulse widths in-

versely proportional to the three relevant energy scales ǫ
f

d
,

Ŵ, and TK exhibit different behavior of the photoemission

current. For the measurements with an ultrashort pulse �t =
1/|ǫ f

d
|, having, therefore, high time resolution, the photoe-

mission current can capture as a function of the delay time

the fast evolution of the high-energy satellite peak for times

close to the time of the quench (t = 0). For a pulse with

intermediate width �t = 1/Ŵ, the photoemission current does

not capture the fast evolution of the high-energy satellite peak

in detail, but the energy resolution is high enough to start

seeing a signal of the Kondo resonance around the Fermi
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level E = 0. For long probe pulses �t = 1/TK, therefore

having high-energy resolution, the continuous evolution of

the high-energy satellite peaks from initial- to final-state

values at short times, cannot be resolved, but the low-energy

Kondo resonance is clearly resolved. The above results and

insights could be useful for future studies of the time evolution

of the Kondo resonance with time-resolved photoemission

spectroscopy.

Since the TDNRG expressions for the nonequilibrium

Green functions presented in this paper hold for general local

operators B̂ and Ĉ, they can easily be generalized to other

time-dependent dynamical quantities, e.g., to time-dependent

dynamical susceptibilities. The latter can then be used in ap-

plications to time-resolved optical conductivity spectroscopy.
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APPENDIX A: ADVANCED GREEN FUNCTION

The advanced Green function is defined as

Ga(t1, t2) = iθ (t2 − t1)〈{B̂(t1), Ĉ(t2)}〉 (A1)

and is transformed into

Ga(t, τ ) = iθ (−τ )〈{B̂(t + τ/2), Ĉ(t − τ/2)}〉 (A2)

with t = (t1 + t2)/2 and τ = t1 − t2 the average and relative times, respectively.

1. Positive time t > 0

We have

Ga(t, τ ) =







i Tr{ρ̂[eiH f (t+τ/2)Be−iH f (t+τ/2), eiH f (t−τ/2)Ĉe−iH f (t−τ/2)]+} if − 2t < τ < 0;

i Tr{ρ̂[eiHi (t+τ/2)Be−iHi (t+τ/2), eiH f (t−τ/2)Ĉe−iH f (t−τ/2)]+} if τ � −2t ;

0 otherwise.

(A3)

Denoting the first and second lines of the above expression by G−
BC (t, τ ) and G+

BC (t, τ ), respectively, we have for G−
BC (t, τ )

G−(t, τ ) = i Tr{e−iH f (t−τ/2)ρ̂eiH f (t−τ/2)[eiH f τ Be−iH f τ , Ĉ]+}

= i
∑

l1e1m1

∑

l2e2m2

∑

l3e3m3

f 〈l1e1m1|e−iH f (t−τ/2)ρ̂eiH f (t−τ/2)|l2e2m2〉 f ( f 〈l2e2m2|eiH f τ Be−iH f τ |l3e3m3〉 f f 〈l3e3m3|Ĉ|l1e1m1〉 f

+ f 〈l2e2m2|Ĉ|l3e3m3〉 f f 〈l3e3m3|eiH f τ Be−iH f τ |l1e1m1〉 f )

= i
∑

me

/∈KK ′K ′′
∑

rsq

f 〈rem|e−iH f (t−τ/2)ρ̂eiH f (t−τ/2)|sem〉 f

× ( f 〈sem|eiH f τ Be−iH f τ |qem〉 f f 〈qem|Ĉ|rem〉 f + f 〈sem|Ĉ|qem〉 f f 〈qem|eiH f τ Be−iH f τ |rem〉 f )

= i
∑

m

/∈KK ′K ′′
∑

rsq

ρ i→ f
rs (m)ei(Em

s −Em
r )(t−τ/2)

(

Bm
sqei(Em

s −Em
q )τCm

qr + Cm
sqBm

qrei(Em
q −Em

r )τ
)

= i
∑

m

/∈KK ′K ′′
∑

rsq

ρ i→ f
rs (m)ei(Em

s −Em
r )t

(

Bm
sqei[(Em

s +Em
r )/2−Em

q ]τCm
qr + Cm

sqBm
qrei[Em

q −(Em
r +Em

s )/2]τ
)

, (A4)

in which we use the identity [33]

∑

l1e1m1

∑

l2e2m2

∑

l3e3m3

=
∑

m

∑

e1e2e3

/∈KK ′K ′′
∑

rsq

(A5)

to obtain the third line in the above equation. While for G+
BC (t, τ ) we have

G+(t, τ ) = i Tr{[ρ̂, eiHi (t+τ/2)B̂e−iHi (t+τ/2)]+eiH f (t−τ/2)Ĉe−iH f (t−τ/2)}

= i
∑

l1e1m1

∑

l2e2m2

∑

l3e3m3

∑

l4e4m4

f 〈l1e1m1|l2e2m2〉i

× i〈l2e2m2|[ρ̂, eiHi (t+τ/2)B̂e−iHi (t+τ/2)]+|l3e3m3〉i i〈l3e3m3|l4e4m4〉 f f 〈l4e4m4|eiH f (t−τ/2)Ĉe−iH f (t−τ/2)|l1e1m1〉 f
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= i
∑

me

/∈KK ′K1K ′
1

∑

rsr1s1

f 〈rem|r1em〉i

× i〈r1em|[ρ̂, eiHi (t+τ/2)B̂e−iHi (t+τ/2)]+|s1em〉i i〈s1em|sem〉 f f 〈sem|eiH f (t−τ/2)Ĉe−iH f (t−τ/2)|rem〉 f

= i
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

∑

q

(

Bm
r1qR̃m

qs1
+ R̃m

r1qBm
qs1

)

e
i(Em

r1
−Em

s1
)(t+τ/2)

Sm
s1sC

m
srei(Em

s −Em
r )(t−τ/2)

= i
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

∑

q

(

Bm
r1qR̃m

qs1
+ R̃m

r1qBm
qs1

)

e
i(Em

s −Em
r +Em

r1
−Em

s1
)t

Sm
s1sC

m
sre

i(Em
r −Em

s +Em
r1

−Em
s1

)τ/2
, (A6)

with R̃ defined as follows:

R̃m
rs =











Rm
kk′ if r = k ∈ K and s = k′ ∈ K ′;

(

wm
e
−βEm

l

Zm

)

if r = s = l ∈ D;

0 otherwise

(A7)

and

Rm
kk′ =

{

0 if m = N ;
∑

lαm+1
A

αm+1

kl

(

wm+1
e
−βEm+1

l

Zm+1

)

A
αm+1†

lk′ +
∑

k1k′
1αm+1

A
αm+1

kk1
Rm+1

k1k′
1

A
αm+1†

k′
1k′ otherwise,

(A8)

where the weights wm in (A8) are the same as those in the expression (4) for the full density matrix of the initial state. In the

above we also used the notation of Refs. [27,44] for the transformation matrices A
αm+1

kl
relating eigenstates |l〉m+1 of H i

m+1 to the

product basis states |k〉m|αm+1〉 and Zm+1 =
∑

l e−βEm+1
l .

Collecting the two contributions to the advanced Green function above and Fourier transforming with respect to the relative

time gives

Ga(ω, t ) =
∫ 0

−2t

dτ ei(ω−iη)τ G−(t, τ ) +
∫ −2t

−∞
dτ ei(ω−iη)τ G+(t, τ )

=
∑

m

/∈KK ′K ′′
∑

rsq

ρ i→ f
rs (m)ei(Em

s −Em
r )t

[

Bm
sqCm

qr

ω +
(

Em
s + Em

r

)

/2 − Em
q − iη

(1 − e−2i[ω+(Em
s +Em

r )/2−Em
q −iη]t )

+
Cm

sqBm
qr

ω −
(

Em
s + Em

r

)/

2 + Em
q − iη

(1 − e−2i[ω−(Em
s +Em

r )/2+Em
q −iη]t )

]

+
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
s1sC

m
srSm

rr1
e

i(Em
s −Em

r +Em
r1

−Em
s1

)t

ω +
(

Em
r − Em

s

)/

2 −
(

Em
s1

− Em
r1

)/

2 − iη

∑

q

(

Bm
r1qR̃m

qs1
+ R̃m

r1qBm
qs1

)

e
−2i(ω+(Em

r −Em
s )/2−(Em

s1
−Em

r1
)/2−iη)t

,

which can be rewritten as

Ga(ω, t ) =
∑

m

/∈KK ′K ′′
∑

rsq

ρ i→ f
rs (m)

[

Bm
sqCm

qr

ω +
(

Em
s + Em

r

)/

2 − Em
q − iη

(ei(Em
s −Em

r )t − e−2i[ω+Em
r −Em

q −iη]t )

+
Cm

sqBm
qr

ω −
(

Em
s + Em

r

)/

2 + Em
q − iη

(ei(Em
s −Em

r )t − e−2i[ω−Em
s +Em

q −iη]t )

]

+
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
s1sC

m
srSm

rr1
e−2i(ω+(Em

r −Em
s )−iη)t

ω +
(

Em
r − Em

s

)/

2 −
(

Em
s1

− Em
r1

)/

2 − iη

∑

q

(

Bm
r1qR̃m

qs1
+ R̃m

r1qBm
qs1

)

. (A9)

Since B̂ ≡ d and Ĉ ≡ d† it follows that Bm
sq = Cm

qs. We also have that ρ
i→ f
rs (m) = ρ

i→ f
sr (m), and R̃m

s1q = R̃m
qs1

, therefore, we can

rewrite the above expression as

Ga(ω, t ) =
∑

m

/∈KK ′K ′′
∑

rsq

ρ i→ f
rs (m)

[

Bm
sqCm

qr

ω +
(

Em
s + Em

r

)/

2 − Em
q − iη

(e−i(Em
s −Em

r )t − e−2i[ω+Em
s −Em

q −iη]t )

+
Cm

sqBm
qr

ω −
(

Em
s + Em

r

)/

2 + Em
q − iη

(e−i(Em
s −Em

r )t − e−2i[ω−Em
r +Em

q −iη]t )

]
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+
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

Bm
rsS

m
ss1

e−2i(ω+(Em
r −Em

s )−iη)t

ω +
(

Em
r − Em

s

)/

2 −
(

Em
s1

− Em
r1

)/

2 − iη

∑

q

(

R̃m
s1qCm

qr1
+ Cm

s1qR̃m
qr1

)

, (A10)

in which we interchanged r and s in the first term. Comparing the expression of Ga(ω, t ) in Eq. (A10) with that of Gr (ω, t ) in

Eq. (19), we can easily show that [Ga(ω, t > 0)]∗ = Gr (ω, t > 0).

2. Negative time t < 0

We have

Ga
BC (t, τ ) =











i Tr{ρ̂[eiHi (t+τ/2)B̂e−iHi (t+τ/2), eiHi (t−τ/2)Ĉe−iHi (t−τ/2)]+} if 2t < τ � 0;

i Tr{ρ̂[eiHi (t+τ/2)B̂e−iHi (t+τ/2), eiH f (t−τ/2)Ĉe−iH f (t−τ/2)]+} if τ < 2t ;

0 otherwise.

(A11)

Denoting the first and second lines of the above expression by G−
BC (t, τ ) and G+

BC (t, τ ), respectively, we have for G−
BC (t, τ )

G−(t, τ ) = i Tr{ρ̂[eiHiτ B̂e−iHiτ , Ĉ]+} = i Tr{eiHiτ Be−iHiτ [Ĉ, ρ̂]+}

= i
∑

l1e1m1

∑

l2e2m2

i〈l1e1m1|eiHiτ B̂e−iHiτ |l2e2m2〉i i〈l2e2m2|[Ĉ, ρ̂]+|l1e1m1〉i

= i
∑

me

/∈KK ′′
∑

rs

i〈rem|eiHiτ B̂e−iHiτ |sem〉i i〈rem|[Ĉ, ρ̂]+|sem〉i

= i
∑

m

/∈KK ′
∑

rs

Bm
rse

i(Em
r −Em

s )τ
∑

q

(Cm
sqR̃m

qr + R̃m
sqCm

qr ), (A12)

while the expression for G+
BC (t, τ ) is similar to that for the case of t > 0:

G+(t, τ ) = i
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

∑

q

(

Bm
r1qR̃m

qs1
+ R̃m

r1qBm
qs1

)

e
i(Em

r1
−Em

s1
)(t+τ/2)

Sm
s1sC

m
srei(Em

s −Em
r )(t−τ/2) (A13)

= i
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

∑

q

(

Bm
r1qR̃m

qs1
+ R̃m

r1qBm
qs1

)

e
i(Em

s −Em
r +Em

r1
−Em

s1
)t

Sm
s1sC

m
sre

i(Em
r −Em

s +Em
r1

−Em
s1

)τ/2
. (A14)

Fourier transforming the resulting Green function gives

Ga(ω, t ) =
∫ 0

2t

dτ ei(ω−iη)τ G−(t, τ ) +
∫ 2t

−∞
dτ ei(ω−iη)τ G+(t, τ )

=
∑

m

/∈KK ′
∑

rs

Bm
rs

ω + Em
r − Em

s − iη
(1 − e2i(ω+Em

r −Em
s +iη)t )

∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

+
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
s1sC

m
srSm

rr1
e

i(Em
s −Em

r +Em
r1

−Em
s1

)t

ω +
(

Em
r − Em

s

)/

2 −
(

Em
s1

− Em
r1

)/

2 − iη

∑

q

(

Bm
r1qR̃m

qs1
+ R̃m

r1qBm
qs1

)

e
2i(ω+(Em

r −Em
s )/2−(Em

s1
−Em

r1
)/2−iη)t

=
∑

m

/∈KK ′
∑

rs

Bm
rs

ω + Em
r − Em

s − iη
(1 − e2i(ω+Em

r −Em
s −iη)t )

∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

+
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
s1sC

m
srSm

rr1
e

2i(ω−(Em
s1

−Em
r1

)−iη)t

ω +
(

Em
r − Em

s

)/

2 −
(

Em
s1

− Em
r1

)/

2 − iη

∑

q

(

Bm
r1qR̃m

qs1
+ R̃m

r1qBm
qs1

)

=
∑

m

/∈KK ′
∑

rs

Bm
rs

ω + Em
r − Em

s − iη
(1 − e2i(ω+Em

r −Em
s −iη)t )

∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

+
∑

m

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

Bm
r1s1

Sm
s1se

2i(ω−(Em
s −Em

r )−iη)t

ω +
(

Em
r1

− Em
s1

)/

2 −
(

Em
s − Em

r

)/

2 − iη

∑

q

(

R̃m
sqCm

qr + Cm
sqR̃m

qr

)

. (A15)
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Comparing the above expression with Gr (ω, t ) in Eq. (23), one can see that [Ga(ω, t < 0)]∗ = Gr (ω, t < 0). In addition,

comparing Eq. (A10) with Eq. (A15), we see that the continuity condition Ga(ω, t → 0+) = Ga(ω, t → 0−) is also satisfied.

APPENDIX B: ADVANCED, LESSER, AND GREATER GREEN FUNCTIONS

We list here the TDNRG expressions for the advanced, lesser, and greater Green functions for all reference times,

complementing those for the retarded Green function and lesser Green function at average time, which have been given in

the main text. The derivations of these expressions are similar to those given for the average-time advanced Green function in

Appendix A and the retarded Green function for t = t2 [50].

1. Advanced Green function

In the case that t = t1,

Ga(ω, t > 0) =
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

ρ i→ f
sr (m)ei(Em

r −Em
s )t

(

Bm
rqCm

qs

ω + Em
s − Em

q − iη
+

Cm
rqBm

qs

ω + Em
q − Em

r − iη

)

, (B1)

Ga(ω, t < 0) =
∑

m

[

/∈KK ′
∑

rs

Bm
rs

ω + Em
r − Em

s − iη
(1 − ei(ω+Em

r −Em
s −iη)t )

∑

q

(

Cm
sqR̃m

qr + R̃m
sqCm

qr

)

+
/∈KK ′K1K ′

1
∑

rsr1s1

Sm
rr1

Cm
r1s1

ω + Em
s1

− Em
r1

− iη
Sm

s1se
i(ω+Em

s −Em
r −iη)t

∑

q

(

Bm
sqR̃m

qr + R̃m
sqBm

qr

)



. (B2)

In the case that t = t2,

Ga(ω, t > 0) =
N

∑

m=m0

{

/∈KK ′K ′′
∑

rsq

[

Cm
rsρ

i→ f
sq (m)e−i(Em

q −Em
s )t + ρ i→ f

rs (m)e−i(Em
s −Em

r )tCm
sq

] Bm
qr

ω + Em
q − Em

r − iη
(1 − e−i(ω+Em

q −Em
r −iη)t )

+
/∈KK ′K1K ′

1
∑

rsr1s1

Sm
rr1

Cm
r1s1

e
−i(ω−Em

r1
+Em

s1
−iη)t

Sm
s1s

∑

q

(

Bm
sqR̃m

qr + R̃m
sqBm

qr

)

ω − Em
r + Em

s − iη







, (B3)

while Ga(ω, t < 0) is time independent, and exactly equals the advanced Green function of the initial state for the same reason

that Gr (ω, t = t1 < 0) is time independent [see discussion preceding Eq. (22)].

2. Lesser Green function

In the case that t = t1

G<(ω, t > 0) =
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

(

Cm
rsB

m
sq

ω − Em
r + Em

s − iη
−

Cm
rsB

m
sq

ω − Em
r + Em

s + iη

)

ρ i→ f
qr (m)ei(Em

r −Em
q )t

+
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

Cm
rsB

m
sq

ω − Em
r + Em

s + iη
ρ i→ f

qr (m)ei(ω+Em
s −Em

q +iη)t

+
N

∑

m=m0

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

∑

q R̃m
r1qCm

qs1

ω − Em
r1

+ Em
s1

+ iη
Sm

s1sB
m
srei(ω+Em

s −Em
r +iη)t , (B4)

G<(ω, t < 0) =
N

∑

m=m0

/∈KK ′
∑

rs

Bm
rs

(

−
∑

q R̃m
sqCm

qr

ω + Em
r − Em

s + iη
+

∑

q R̃m
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qr
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)

−
N
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/∈KK ′
∑
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∑

q R̃m
sqCm

qr

ω + Em
r − Em

s − iη
ei(ω+Em

r −Em
s −iη)t

+
N

∑
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/∈KK ′K1K ′
1

∑

rsr1s1

Cm
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ω − Em
r + Em
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Sm
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∑

q
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s1qR̃m
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e
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s1

−Em
r1

−iη)t
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r1r . (B5)
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In the case that t = t2,

G<(ω, t > 0) =
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

(

−
Cm

rsB
m
sq

ω − Em
q + Em

s + iη
+

Cm
rsB

m
sq

ω − Em
q + Em

s − iη

)

ρ i→ f
qr (m)ei(Em

r −Em
q )t

−
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

Cm
rsB

m
sq

ω − Em
q + Em

s − iη
ρ i→ f

qr (m)e−i(ω+Em
s −Em

r −iη)t

+
N

∑

m=m0

/∈KK ′K1K ′
1

∑

rsr1s1

Sm
rr1

∑

q Bm
r1qR̃m

qs1

ω + Em
r1

− Em
s1

− iη
Sm

s1sC
m
sre−i(ω−Em

s +Em
r −iη)t , (B6)

G<(ω, t < 0) =
N

∑

m=m0

/∈KK ′
∑

rs

Bm
rs

(

∑

q R̃m
sqCm

qr

ω + Em
r − Em

s − iη
−

∑

q R̃m
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qr

ω + Em
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s + iη

)

+
N

∑
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/∈KK ′
∑
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∑
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ω + Em
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e−i(ω+Em

r −Em
s +iη)t

−
N

∑
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/∈KK ′K1K ′
1

∑
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Bm
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ω + Em
r − Em

s + iη
Sm

ss1

∑

q

R̃m
s1qCm

qr1
e
−i(ω−Em

s1
+Em

r1
+iη)t

Sm
r1r . (B7)

3. Greater Green function

In the case that t = (t1 + t2)/2,

G>(ω, t > 0) = −
N

∑

m=m0

/∈KK ′K ′′
∑

rsq

Bm
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m
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−
N

∑

m=m0

/∈KK ′K1K ′
1

∑

rsr1s1

Cm
rse

−2i(ω+Em
r −Em

s )t e−2ηt
Sm

ss1

∑

q R̃m
s1qBm

qr1
Sm

r1r

ω − Em
r −Em

s +Em
r1

−Em
s1
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N
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, (B8)

G>(ω, t < 0) = −
N

∑
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In the case that t = t1,

G>(ω, t > 0) =
N

∑

m=m0

/∈KK ′K ′′
∑
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−
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rsC
m
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−
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G>(ω, t < 0) =
N
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In the case that t = t2,

G>(ω, t > 0) =
N

∑
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G>(ω, t < 0) =
N
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APPENDIX C: CONVERGENCE OF THE LORENTZIAN

BROADENING SCHEME FOR TIME-DEPENDENT

SPECTRAL FUNCTIONS

Within the NRG approach, equilibrium Green functions

have a discrete Lehmann representation consisting a set of

poles at the excitations of the system. Replacing the delta

functions in the imaginary part of the Green functions with

Gaussian or logarithmic-Gaussians [36,51,52] yields smooth

spectral functions A(ω). For nonequilibrium Green func-

tions, and their associated time-dependent spectral functions

A(ω, t ), we argued in Sec. IV that a Lorentzian broaden-

ing procedure is required to consistently broaden the regu-

lar and singular parts contributing to the imaginary part of

the nonequilibrium Green function. Since Lorentzians have

long tails, compared to the exponential ones of Gaussians,

it is important to check the convergence with respect to

the value of the broadening parameter used, which we do

here. Another issue which arose in Sec. V concerned the

origin of the positive spectral weight in time-dependent oc-

cupied density of states πŴN (ω, t ) = ŴG<(ω, t )/(2i) which

is found even at T = 0 and in the long-time limit t → +∞,

in particular, whether this might be attributed to the use of

a Lorentzian broadening scheme. We show that this is not

the case. Instead, as discussed in more detail in Appendix D,

it is a result of imperfect thermalization within the TDNRG

approach.

We refer to Fig. 6 showing the time-dependent occupied

density of states N (ω, t ) defined from the lesser Green func-

tion and evaluated by using the Lorentzian broadening. One

may see that the density of states is finite even at positive

frequency and long times even though the temperature is zero.
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FIG. 9. The normalized occupied density of states πŴN (ω, t ) =
ŴG<(ω, t )/(2i) vs ω as in Fig. 6 at three different average times t =
−∞, 0, +∞, with Lorentzian broadening parameter η0 = 1/Nz = 1

32

and in the frequency range close to the Fermi level.
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FIG. 10. The normalized occupied density of states

πŴN (ω, t ) = ŴG<(ω, t )/(2i) vs ω/TK as in Fig. 6 at average

time t = +∞ and in the frequency range close to the Fermi

level, calculated with the Lorentzian and logarithmic-Gaussian

broadening.

This is different from the equilibrium lesser Green function

at zero temperature which only gives a finite density of state

below the Fermi level (ω = 0) as follows from the equilibrium

result in Eq. (14). It is not obvious that the nonzero density in

N (ω > 0, t → +∞) is due to the broadening scheme or due

to the nonequilibrium effect or both. Figure 9 shows N (ω, t )

at three different times; infinite past, zero time, and infinite

future, but in the frequency range closer to the Fermi energy

level. It is clear that the occupied density of states in the

infinite past should be equal to the occupied density of states

in the equilibrium initial state, which by Eq. (14) implies a

zero occupied density of states for ω > 0, as indeed observed.

In contrast, at zero time, the occupied density of states shows

both positive and negative values at positive frequencies, and

in the infinite future, the occupied density of states shows a

finite positive value at ω > 0. This figure already suggests
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FIG. 11. The normalized occupied density of states

πŴN (ω, t ) = ŴG<(ω, t )/(2i) vs ω/TK as in Fig. 6 at average

time t = +∞ and in the frequency range close to the Fermi level,

calculated with the Lorentzian broadening and η0 = 1/Nz.
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FIG. 12. The normalized occupied density of states

πŴN (ω, t ) = ŴG<(ω, t )/(2i) vs ω/TK as in Fig. 6 at average

time t = +∞ and in the frequency range close to the Fermi level,

calculated with the logarithmic-Gaussian broadening and η0 = 1/Nz.

that imperfect thermalization at long positive times leads to

the nonzero occupied density of states for ω > 0.

To shed light on the above problem, we also calculate

the zero-temperature occupied density of state N (ω, t ) in the

infinite future using a logarithmic-Gaussian broadening. This

is possible since for t → +∞ only the pole contributions

to the lesser Green function remain, and the expression can

be reduced to a set of delta functions, for which the usual

logarithmic-Gaussian broadening applies. Figure 10 shows

the comparison of N (ω, t ) determined with the two different

broadening schemes, Lorentzian and logarithmic-Gaussian

and using the same value of η0 = 1/Nz = 1
32

where η0 is re-

lated to the infinitesimal broadening η appearing in the Green

functions by η = η0|�E |, with �E an excitation appearing

in the Green function. One sees that both schemes give nearly

identical results and, moreover, both schemes result in positive

spectral weight at ω > 0.
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FIG. 13. Effective Fermi distribution feff (ω) = N (ω, t →
+∞)/A(ω, t → +∞) vs ω/TK where εi

d = −U i/2 = −15Ŵ and

T i
K = 3 × 10−8D = 3 × 10−5Ŵ.
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FIG. 14. Effective Fermi distribution feff (ω) = N (ω, t →
+∞)/A(ω, t → +∞) vs ω/TK where εi

d = −U i/2 = −12Ŵ and

T i
K = 3 × 10−7D = 3 × 10−4Ŵ.

It is well known that the function 1/(ω − ω0 + iη), within

the Lorentzian broadening scheme, decays slowly away from

ω0, while the same function with the same value of η0 approx-

imated by the logarithmic-Gaussian is more local. Therefore,

for the Lorentzian broadening, the smaller the η0 the more

accurate the result. In contrast, for the logarithmic-Gaussian

broadening, the result is less sensitive to the precise value of

η0. This is illustrated in Figs. 11 and 12, which show N (ω, t )

at the infinite future using the Lorentzian and logarithmic-

Gaussian broadening schemes, respectively, and for different

values of η0 = 1/Nz.

In Fig. 11, the results with the Lorentzian broadening

show a strong dependence on the value of η0. The results

start to converge when η0 is as small as 1
32

. In contrast, the

results with the logarithmic-Gaussian broadening in Fig. 12

show a much weaker dependence on η0. We conclude that

the Lorentzian broadening scheme yields converged results

for spectral functions for η0 = 1
32

and that the observed finite

spectral weight in N (ω, t → +∞) at ω > 0 is not an artifact

of the Lorentzian broadening as the same result is found for

the logarithmic-Gaussian scheme.

APPENDIX D: THERMALIZATION

The observation of a nonzero occupied density of states at

positive frequency at the infinite future and for zero temper-

ature indicates imperfect thermalization of the system in this
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FIG. 15. Effective Fermi distribution feff (ω) = N (ω, t →
+∞)/A(ω, t → +∞) vs ω/TK where εi

d = −U i/2 = −9Ŵ and

T i
K = 2.8 × 10−6D = 2.8 × 10−3Ŵ.

limit. This is due to the use of a discrete conduction electron

bath in the NRG approach, which in nonequilibrium situa-

tions cannot properly dissipate the energy change following

a sudden quench due to the nonextensive heat capacity of the

discrete Wilson chain bath [27,31,55]. We expect that for a

true heat bath, that the occupied density of states at infinite

time will follow the expression (14) in the main text. To inves-

tigate the problem in more detail, we calculate the “effective”

Fermi distribution which is defined by N (ω, t )/A(ω, t ) when

t is in the infinite-time limit, which we denote as feff (ω). The

results are shown in Figs. 13–15, in which the calculations

are done with the same final state ε
f

d
= −U f /2 = −6Ŵ and

three different initial states εi
d = −U i/2 = −15Ŵ, −12Ŵ, and

−9Ŵ, where Ŵ = 0.001.

We see that the effective Fermi distribution does not follow

the Fermi distribution at the effective temperature Teff = Ŵ

or TK, but only shows deviations from the Fermi distribution

at these temperatures. However, all three effective Fermi

distributions follow the Fermi distribution with an effective

temperature Teff = 3 × 10−8 at low frequencies (only by co-

incidence, this is close to the initial-state Kondo temperature

of one of the three quenches in Figs. 13–15, namely, that in

Fig. 13). Therefore, we conclude that the long-time limit is in-

dependent of the initial state, but that some heating up occurs

in the evolution toward the final state leading to an imperfect

thermalization at t = +∞. The amount of this heating up is

relatively small since Teff/TK = 1.2 × 10−3 ≈ Ŵ/D.
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