000874536 001__ 874536
000874536 005__ 20240712084532.0
000874536 0247_ $$2doi$$a10.1002/adma.202000080
000874536 0247_ $$2ISSN$$a0935-9648
000874536 0247_ $$2ISSN$$a1521-4095
000874536 0247_ $$2Handle$$a2128/25198
000874536 0247_ $$2altmetric$$aaltmetric:77499701
000874536 0247_ $$2pmid$$apmid:32163652
000874536 0247_ $$2WOS$$aWOS:000530300000026
000874536 037__ $$aFZJ-2020-01492
000874536 082__ $$a660
000874536 1001_ $$00000-0002-4023-2178$$aStolterfoht, Martin$$b0$$eCorresponding author
000874536 245__ $$aHow To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%
000874536 260__ $$aWeinheim$$bWiley-VCH$$c2020
000874536 3367_ $$2DRIVER$$aarticle
000874536 3367_ $$2DataCite$$aOutput Types/Journal article
000874536 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593523835_1665
000874536 3367_ $$2BibTeX$$aARTICLE
000874536 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874536 3367_ $$00$$2EndNote$$aJournal Article
000874536 520__ $$aPerovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1‐sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non‐radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open‐circuit voltage and the internal quasi‐Fermi level splitting (QFLS), the transport resistance‐free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity‐dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non‐radiative fill factor and open‐circuit voltage loss. It is found that potassium‐passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit.
000874536 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000874536 588__ $$aDataset connected to CrossRef
000874536 7001_ $$0P:(DE-HGF)0$$aGrischek, Max$$b1
000874536 7001_ $$0P:(DE-HGF)0$$aCaprioglio, Pietro$$b2
000874536 7001_ $$0P:(DE-HGF)0$$aWolff, Christian M.$$b3
000874536 7001_ $$0P:(DE-HGF)0$$aGutierrez‐Partida, Emilio$$b4
000874536 7001_ $$0P:(DE-HGF)0$$aPeña‐Camargo, Francisco$$b5
000874536 7001_ $$0P:(DE-HGF)0$$aRothhardt, Daniel$$b6
000874536 7001_ $$0P:(DE-HGF)0$$aZhang, Shanshan$$b7
000874536 7001_ $$0P:(DE-HGF)0$$aRaoufi, Meysam$$b8
000874536 7001_ $$0P:(DE-HGF)0$$aWolansky, Jakob$$b9
000874536 7001_ $$0P:(DE-HGF)0$$aAbdi‐Jalebi, Mojtaba$$b10
000874536 7001_ $$0P:(DE-HGF)0$$aStranks, Samuel D.$$b11
000874536 7001_ $$0P:(DE-HGF)0$$aAlbrecht, Steve$$b12
000874536 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b13
000874536 7001_ $$0P:(DE-HGF)0$$aNeher, Dieter$$b14
000874536 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.202000080$$gp. 2000080 -$$n17$$p2000080$$tAdvanced materials$$v32$$x1521-4095$$y2020
000874536 8564_ $$uhttps://juser.fz-juelich.de/record/874536/files/adma.202000080-1.pdf$$yOpenAccess
000874536 8564_ $$uhttps://juser.fz-juelich.de/record/874536/files/adma.202000080-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874536 909CO $$ooai:juser.fz-juelich.de:874536$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b13$$kFZJ
000874536 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000874536 9141_ $$y2020
000874536 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874536 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000874536 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874536 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017
000874536 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017
000874536 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874536 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874536 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874536 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874536 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874536 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874536 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874536 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874536 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874536 920__ $$lyes
000874536 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000874536 9801_ $$aFullTexts
000874536 980__ $$ajournal
000874536 980__ $$aVDB
000874536 980__ $$aUNRESTRICTED
000874536 980__ $$aI:(DE-Juel1)IEK-5-20101013
000874536 981__ $$aI:(DE-Juel1)IMD-3-20101013