001     874536
005     20240712084532.0
024 7 _ |a 10.1002/adma.202000080
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 2128/25198
|2 Handle
024 7 _ |a altmetric:77499701
|2 altmetric
024 7 _ |a pmid:32163652
|2 pmid
024 7 _ |a WOS:000530300000026
|2 WOS
037 _ _ |a FZJ-2020-01492
082 _ _ |a 660
100 1 _ |a Stolterfoht, Martin
|0 0000-0002-4023-2178
|b 0
|e Corresponding author
245 _ _ |a How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593523835_1665
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1‐sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non‐radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open‐circuit voltage and the internal quasi‐Fermi level splitting (QFLS), the transport resistance‐free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity‐dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non‐radiative fill factor and open‐circuit voltage loss. It is found that potassium‐passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Grischek, Max
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Caprioglio, Pietro
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wolff, Christian M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gutierrez‐Partida, Emilio
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Peña‐Camargo, Francisco
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rothhardt, Daniel
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhang, Shanshan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Raoufi, Meysam
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wolansky, Jakob
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Abdi‐Jalebi, Mojtaba
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Stranks, Samuel D.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Albrecht, Steve
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 13
700 1 _ |a Neher, Dieter
|0 P:(DE-HGF)0
|b 14
773 _ _ |a 10.1002/adma.202000080
|g p. 2000080 -
|0 PERI:(DE-600)1474949-x
|n 17
|p 2000080
|t Advanced materials
|v 32
|y 2020
|x 1521-4095
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874536/files/adma.202000080-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874536/files/adma.202000080-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874536
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV MATER : 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21