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We study numerically the dynamics of a network of all-to-all-coupled, identical sub-networks con-
sisting of diffusively coupled, non-identical FitzHugh–Nagumo oscillators. For a large range of
within- and between-network couplings, the network exhibits a variety of dynamical behaviors, pre-
viously described for single, uncoupled networks. We identify a region in parameter space in which
the interplay of within- and between-network couplings allows for a richer dynamical behavior than
can be observed for a single sub-network. Adjoining this atypical region, our network of networks
exhibits transitions to multistability. We elucidate bifurcations governing the transitions between the
various dynamics when crossing this region and discuss how varying the couplings affects the effec-
tive structure of our network of networks. Our findings indicate that reducing a network of networks
to a single (but bigger) network might not be accurate enough to properly understand the complexity
of its dynamics. Published by AIP Publishing. https://doi.org/10.1063/1.5039483

Many natural systems ranging from ecology to the neu-

rosciences can be described as networks of networks. An

example is interacting patches of neural tissue, where each

patch constitutes a sub-network. In such a configuration

and other models, the sub-networks are often assumed

to be identical but consisting of non-identical units. A

question arising for such networks of networks is as to

what extent their dynamics can be reduced to a more

simple network by aggregating parts of the network. We

here explore this question by investigating numerically

the dynamics of a network of all-to-all-coupled, identical

networks consisting of diffusively coupled, non-identical

excitable FitzHugh–Nagumo oscillators. Intriguingly, we

identify a small region of the parameter space spanned by

the within- and between-network coupling strength that

allows for a richer dynamical behavior than what can be

observed for a single sub-network.

I. INTRODUCTION

Over the past two decades, complex networks have
proven valuable to improve our understanding of organiza-
tional principles and dynamics of spatially extended systems,
which led to broad application in diverse scientific fields.1–11

Taking into account that many real systems of different or
similar nature usually interact with each other, the network
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approach was recently extended leading to novel concepts
such as interdependent networks, interconnected networks,
networks of networks, multi-layered networks, or multiplex
networks.12–20 Studies on networks of networks have revealed
novel characteristics that could not be observed for single
networks. This applies to structural properties, where the con-
nectivity in such network of networks is the most important
determinant, as well as to dynamical properties, where par-
ticularly a synchronized dynamics of several or all nodes
attracts most interest. Networks of networks have been proven
to be robust with respect to perturbations, notably to cascad-
ing failures13,21–24 and even if consisting of two functionally
identical coupled networks.25

Considering the dynamics on networks of networks,
novel synchronization phenomena could be identified such as
breathing synchronization,26 explosive synchronization,15,27

intra-layer28 and inter-layer29,30 synchronization, and asym-
metry-induced31 and cluster32 synchronization. Furthermore,
it has been shown that a variety of complex dynamics like
traveling waves, multistability, quasi-periodicity, and chaos
can emerge.33,34 The concept of the master stability function
has been extended to multi-layer networks.35

When investigating networks of networks, the question
arises as to what extent the dynamics of such a complex net-
work can be reduced by aggregating parts of the network. This
question of reducibility arises particularly in the case when the
network of networks is constructed by identical sub-networks.
For multi-layered networks, an algorithm based on the von
Neumann entropy has been proposed to reduce the number of
layers.36,37 However, these studies focus on structural proper-
ties of the network and the question of reducibility has rarely
been discussed from the point of view of the dynamics on
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such networks.38–40 Here, we follow the latter studies’ line
of research and investigate the dynamics of a network of all-
to-all coupled, identical networks consisting of diffusively
coupled, non-identical excitable units. Such a configuration is
often used in neuroscientific studies of groups of interacting
neuronal networks41–44 and can be regarded as the simplest
representation of a network of networks. We find that our
network of networks not only allows for a richer dynamical
behavior than the corresponding single networks but also pro-
vides important clues about the reducibility of networks of
networks.

II. THE MODEL

We consider a network (or system) that consists of two
identical sub-networks, each of which consists of n diffu-
sively coupled FitzHugh–Nagumo oscillators45,46 (or units).
The dynamics of unit i in sub-network q is governed by the
following differential equations:

ẋqi = xqi(a − xqi)(xqi − 1) − yqi + KW + KB,

ẏqi = bixqi − cyqi,
(1)

where xqi is the excitatory and yqi is the inhibitory variable;
a, b, and c are control parameters; and KW and KB are the
coupling terms.

Following previous studies,47,48 we fix a = −0.0276 and
c = 0.02 for all units and choose

bi := 0.006 +
i − 1

n − 1
× 0.008, (2)

i.e., inhomogeneously. Within a sub-network, the units are
coupled completely and diffusively:

KW :=
kW

n − 1

n∑

j=1

(xqj − xqi), (3)

where kW is the within-network coupling strength. Note that
with the aforementioned setting of control parameters, each
unit would exhibit high-amplitude oscillations if units were
uncoupled. The coupling suppresses these oscillations so that
each sub-network acts like an excitable system.

The sub-networks are structural copies of each other.
They are coupled to each other diffusively via their mean
fields:

KB :=
kB

n

n∑

j=1

(xrj − xqi), (4)

where r = 1 if q = 2 and r = 2 if q = 1, and kB is the
between-network coupling strength.

The system entails enough complexity to give rise to sev-
eral different dynamics, made explicit in Sec. III. The study
of a single sub-network is at the same time comprehensible
enough to distinguish the existing dynamics and transitions of
regimes, extensively studied previously.47,48

The dynamics [Eq. (1)] was numerically integrated
using an adaptive fifth-order Runge–Kutta–Dormand–Prince
procedure.49 For each of the following observations and
analyses, at least 104 initial time units were discarded. The
choice of the initial conditions (near the attractor) had no
influence on our observations. In Sec. IV C, different random
initial conditions were used per realization.

We choose as the main observable the mean of the exci-
tatory variables for each sub-network: x̄q (t) := 1

n

∑n
i=1 xqi (t).

These capture the oscillatory behavior of each sub-network.
We also employ the mean field of the entire network:
x̄ := (x̄1 + x̄2)/2.

III. OVERVIEW OF DYNAMICAL REGIMES

We first consider the case n = 10, i.e., two sub-networks
of ten units each. This choice permits enough inhomogeneity
of the sub-networks – arising from the different values of bi

– whilst keeping the systems coupling structure simple. We
investigate the dynamics in the parameter space spanned by
the two coupling strengths kW and kB.

In Fig. 1, we show – for each sub-network q – typi-
cal time series of the average value of the first dynamical
variables, x̄q. The sub-networks show a variety of complex
dynamical behaviors,50 including low-amplitude oscillations,
chaotic dynamics, different types of mixed-mode oscillations,

FIG. 1. Exemplary temporal evolutions of the average value of the first dynamical variables x̄1 and x̄2 (top row) and projections of their trajectories in phase
space from 104 time units (bottom row) for eight choices of coupling strengths (kW, kB). Sub-networks consisted of n = 10 units each. The headers indicate the
designation of each dynamics or oscillation. “×16” indicates that the shown phase-space projection has to be scaled by this factor.
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FIG. 2. Dynamical regimes in parameter space (kB, kW). The dynamics
observed during 5 × 104 time units are indicated by text or color. Orange
indicates chaotic dynamics. The black region – the atypical region – is com-
posed of several different dynamics; Fig. 3 shows a zoom into the region
marked with a dashed box. Due to the existence of multistability, random
initial conditions are chosen at each pair (kW, kB).

in- and anti-phase quasi-periodic, as well as phase-locked and
anti-phase-locked dynamics.

For 0.0015 � (kW + kB) � 0.064, the trivial fixed point
at (x̄1, ȳ1, x̄2, ȳ2) = (0, 0, 0, 0) is stable and all solutions con-
verge to this point. For 0.064 � (kW + kB) � 0.123, regu-
lar low-amplitude oscillations emerge from the fixed point.
Chaotic dynamics are identified by a positive Lyapunov
exponent and are also characterized by the irregularity of
the high-amplitude peaks observed. In between and beyond
the chaotic regimes (cf. Fig. 2), we observe mixed-mode
oscillations, i.e., periodic dynamics featuring high- and low-
amplitude oscillations. The types of mixed-mode oscillations
are specified via the short-hand designation Ls, where L

denotes the number of high-amplitude and s the number of
low-amplitude oscillations during one period. In a compar-
ative sense, low-amplitude dynamics are a special case of
mixed-mode oscillations corresponding to the case Ls = 01.
Likewise, the perpetual high-amplitude oscillations observed
at a high-coupling strength correspond to the case Ls = 10

(this also corresponds to the behavior of a single, uncoupled
unit). The observed transition of regimes corresponds to the
one thoroughly studied before50 and can be explained by the
two networks behaving like a single network. However, this
does not apply to the dynamics within the atypical region
described in Sec. IV.

IV. DYNAMICS IN THE ATYPICAL REGION

A. Overview of dynamics

For a weak coupling between sub-networks (kB ∈ [0.0,
0.02]) and for a range of within-network couplings (kW∈[0.08,
0.22]) (the black region in Fig. 2, zoomed in Fig. 3), we

FIG. 3. Enlargement of the parameter range encircled by the dashed box in
Fig. 2, with additional specification of the atypical region: red denotes anti-
phase-locked periodic oscillations; green denotes anti-phase quasi-periodic
oscillations; gray denotes lag-synchronous mixed-mode oscillations; blue
denotes phase-locked periodic oscillations; purple denotes in-phase quasi-
periodic oscillations; orange denotes chaotic dynamics. The remaining
dynamics are declared by text. The horizontal cut (h) is studied in detail in
Sec. IV B 1 and can be seen in Fig. 4. The vertical cut (v) is studied in detail
in Sec. IV B 2 and can be seen in Fig. 5. Unlike Fig. 2, each simulation uses
the same initial condition, in order to ensure that the system remains approxi-
mately on the same manifold and the regions of different dynamics are better
captured.

observe the dynamics of sub-networks to strongly differ
from the aforementioned symmetric structure, where the sub-
networks behave each as independent, but separate networks.
Note that a rigorous outlining of the atypical region is hin-
dered by the presence of multistability, discussed in Sec. IV C.

More specifically, we observe the following dynamics in
the atypical region (also see Figs. 1 and 3):

In-phase quasi-periodic: Both sub-networks exhibit
low-amplitude oscillations whose amplitudes differ over
time and between the sub-networks. There is a phase off-
set between the two sub-networks with a varying phase
difference.

Phase-locked periodic: Both sub-networks exhibit low-
amplitude oscillations whose amplitudes are constant over
time but differ between the sub-networks. There is a constant
phase offset between the two sub-networks.

Anti-phase-locked periodic: The two sub-networks
exhibit low-amplitude oscillations with the same amplitude
offset by half a period.

Anti-phase quasi-periodic: Both sub-networks exhibit
low-amplitude oscillations whose amplitudes differ over time
and between the sub-networks. The phase offset varies over
time but never becomes zero.

Lag-synchronous mixed-mode oscillations: Each sub-
network exhibits the same mixed-mode oscillation, but there
is a constant phase offset between the sub-networks.
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The phase-locked periodic dynamics is the only one
where one sub-network can consistently dominate the other,
in the sense that it has a persistently larger oscillation ampli-
tude than the other network. As expected from the symmetry
of the scenario, it entirely depends on initial conditions which
sub-network is dominant, i.e., the system is bistable. How-
ever, we found no means to predict the dominant sub-network
from the initial conditions. We also observed cases where the
dominance of the sub-networks switches but only in regimes
of chaotic dynamics.

B. Parameter cuts through the atypical region

In order to thoroughly study the underlying dynamics in
the atypical region and the bifurcations governing the transi-
tions between these dynamics, and to showcase the sequences
of dynamical regimes near or within this region, we perform
cuts through the two-dimensional parameter region, varying
only one of the coupling strengths. We verify the bifurcations
occurring at each transition point by performing a numerical
continuation of the various stable and unstable fixed points
and limit cycles.51,52

The nature of the various dynamical regimes observed is
characterized using the three largest Lyapunov exponents λ1,
λ2, and λ3. We classify the dynamics as multistable for a given
parameter setting if we do not observe the same dynamical
behavior over 25 random initial conditions. Note from Fig. 1
that for the parameter regime under consideration, the dynam-
ics of the two sub-networks may not be identical. For any
such dynamics, there is an inherent “trivial” bistability arising
from the identical nature of the sub-networks. In Secs. IV B 1
and IV B 2 of the paper, we exclude this bistability when
speaking of multistability.

1. Varying kB

Fixing the within-network coupling strength at
kW = 0.13, we vary the between-network coupling strength
kB from 0 to 0.01. This transversal cut covers a wide variety
of dynamics (see Fig. 4).

For kB = 0, the uncoupled sub-networks perform inde-
pendent mixed-mode oscillations. As the coupling is slightly
increased, the sub-networks start interacting and exhibit a
variety of chaotic dynamics. For 0.000780 � kB � 0.001229,
the dynamics stabilize into a limit cycle (λ1 = 0;
λ2 = λ3 < 0), giving rise to anti-phase-locked periodic oscil-
lations, via a reverse torus bifurcation T1. This stable limit
cycle loses its stability at kB ≈ 0.001229 via a torus bifur-
cation T2, giving rise to a stable torus on which the system
executes anti-phase quasi-periodic oscillations (λ1 = λ2 = 0;
λ3 < 0).

At kB ≈ 0.00158, the unstable limit cycle around which
the corresponding torus is formed disappears together with
the torus in a limit-point (LP) bifurcation. Therefore, the
dynamics becomes chaotic (λ1 > 0) with occasional high-
amplitude oscillations. As we move closer to kB ≈ 0.002872,
the largest Lyapunov exponent λ1 decreases and the high-
amplitude oscillations become progressively less frequent. On
increasing kB further, we reach a small range of parameter
0.00248 � kB � 0.002872 where multistability is observed in

FIG. 4. Parameter regimes for kW = 0.13 [horizontal cut (h) in Fig. 3]. Top:
Excerpt of Fig. 3 showing the neighborhood of the cut. Middle: Minimal and
maximal values of the average observable x̄. The blue dots represent stable
solutions of the numerical continuation and the gray dots unstable. Bottom:
The three largest Lyapunov exponents of the system. The bifurcations are
marked by the dashed vertical lines, including torus bifurcations (T1, T2, T3)
and a limit point (LP). Regimes of multistability are shaded yellow. The top
and middle panel use unique initial conditions; the bottom panel uses differing
ones. All data are based on 105 time units.

our numerical simulations. Depending on the initial condi-
tions, the trajectories may converge to either in-phase quasi-
periodic oscillations, phase-locked periodic oscillations, or
chaotic oscillations (see the top panel of Fig. 4). As we reach
kB ≈ 0.002872, the quasi-periodic motion ceases via a reverse
torus bifurcation T3 and all trajectories converge to phase-
locked periodic dynamics, i.e., a limit cycle (λ1 = 0; λ2 =

λ3 < 0).
This limit cycle remains stable until kB ≈ 0.009169

after which the trajectories revert back to exhibiting chaotic
motion involving occasional high-amplitude oscillations
(λ1 > 0; λ2 = 0; λ3 < 0). Note that the attractor correspond-
ing to chaotic dynamics appears already at kB ≈ 0.0079 and
continues beyond kB = 0.01. The system is therefore mul-
tistable in the range of 0.0079 � kB � 0.009169, where a
trajectory can converge either to the small-amplitude limit
cycle, i.e., phase-locked periodic oscillations, or to the chaotic
attractor.

2. Varying kW

We observe an even more intricate sequence of bifur-
cations when the within-network coupling strength kW is
increased, whilst the between-network coupling strength kB

is fixed at 0.003 (see Fig. 5).
When kW → 0, the units of the two sub-networks are

connected effectively only by the between-network cou-
plings. The origin of state space is the only stable fixed
point in the system (λ1 < 0) and all trajectories converge
to this global attractor. It loses its stability in a supercrit-
ical Hopf bifurcation (H) at kW ≈ 0.07823, beyond which
all trajectories converge to the newly formed limit cycle
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FIG. 5. Parameter regimes for kB = 0.003 [vertical cut (v) in Fig. 3]. Top:
Rotated excerpt of Fig. 3 showing the neighborhood of the cut. Middle: Min-
imal and maximal values of the average observable x̄. The blue dots represent
stable solutions of the numerical continuation and the gray dots unstable. Bot-
tom: The three largest Lyapunov exponents of the system. The bifurcations
are marked by the dashed vertical lines, including a Hopf bifurcations (H),
a pitchfork (PF) bifurcation, torus bifurcations (T1, T2), a period doubling
(PD), a branch point (BP), and a limit point (LP). Regimes of multistability
are shaded yellow. The top and middle panel use unique initial conditions; the
bottom panel uses differing ones. All data are based on 105 time units.

(λ1 = 0; λ2, λ3 < 0), where both sub-networks exhibit syn-
chronous low-amplitude oscillations. At kW = 0.08849, this
limit cycle becomes unstable through a pitchfork (PF) bifur-
cation, giving rise to phase-locked periodic oscillations which
are no longer synchronized.

Numerical continuation of the limit cycles shows that the
stability of the two limit cycles is lost via a torus bifurca-
tion T1 at kW ≈ 0.1022 and regained only at kW ≈ 0.111 via
a reverse torus bifurcation T2. Therefore, in between these
bifurcation points, the system is expected to exhibit quasi-
periodicity. While the Lyapunov exponents corroborate the
results of the continuation methods (with λ1 = λ2 = 0; λ3 < 0
for this parameter range), in the numerical simulations using
a single initial condition, we did not find those regions of
quasi-periodicity. Note that, in addition to the tori, a stable
limit cycle also appears for the parameter interval 0.104 �

kW � 0.1075. This results in the system being multistable in
the aforementioned intervals of parameters.

The limit cycles which emerge after T2 remain stable
until kW ≈ 0.1488. Within this parameter window, another
stable high-amplitude limit cycle corresponding to mixed-
mode oscillations emerges at kW ≈ 0.1402, via a period dou-
bling (PD). Note that this high-amplitude limit cycle lies on
the manifold corresponding to complete synchrony of the
two sub-networks. The stability of this limit cycle extends
until kW ≈ 0.1851, vanishing at a branch-point (BP). This
implies that the system shows a second region of multistabil-
ity when 0.1402 � kW � 0.156. The existence of both limit
cycles is also indicated by the Lyapunov exponents. Through-
out this parameter range, the largest Lyapunov exponent λ1

FIG. 6. Regions of multistability (blue) in the system as estimated from 25
initial conditions. Contours of the parameter regimes (black) as in Fig. 3 for
orientation. Multistability exists mainly surrounding the atypical region, i.e.,
most dynamical regimes of a single network exist alongside the novel dynam-
ics emerging from the novel dynamics of system Eq. (1). Random initial
conditions are taken at each iteration in order to uncover multistability.

is zero and all the other exponents are negative. The region
of multistability is also indicated by the fact that the second
and third largest Lyapunov exponents assume different values
depending on the initial conditions.

Beyond kW ≈ 0.1851, the system exhibits lag-synchronous
mixed-mode oscillations (λ1 = 0; λ2, λ3 < 0) of type Ls = 11,
which lose stability and give rise to a chaotic state (λ1 > 0)
within the interval 0.193 � kW � 0.211. Small regions of
multistability exist in this area. The system regains stabil-
ity via a limit-point (LP) bifurcation, entering a synchronous
mixed-mode oscillations of type Ls = 10, i.e., pure high-
amplitude oscillations. This is the stable dynamics observed
beyond kW > 0.211.

C. Multistability

As can be seen already in Figs. 4 and 5, the parame-
ter values at which bifurcations occur differ slightly between
the results obtained from simulations and those from employ-
ing continuation methods. This is due to the existence of
multistability in the system.

In Fig. 6, we show the regions in parameter space where
multistability occurs. We observe that the borders of transition
to multistability partially match the borders of the atypi-
cal region. The exact transitions and stability of the system
are not specified since the goal is to portray the connection
of the dynamics in the atypical region to the emergence of
multistability.

D. Dependence on sub-network size

To ensure the above results are not singular to the num-
ber of units in either sub-network, we investigated analogous
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FIG. 7. Boundaries of the in-phase quasi-periodic and phase-locked periodic
regimes (purple and blue areas in Fig. 3) for different numbers of units per
sub-network (n). The atypical regions are present in the normalized parameter
space (kB, kW) in all cases but can exhibit slightly different shapes.

systems with n = 2 to n = 100 units in each sub-network.
Note that this comparison is facilitated through the normaliza-
tions with the sub-networks’ size n in Eqs. (2)–(4). In Fig. 7,
we show how the sub-network size affects the parameter
regimes exhibiting in-phase quasi-periodic and phase-locked
periodic regimes. We chose these regimes for a comparison as
they are largest and have comparably sharp borders. There are
of course several other dynamics involved, but our aim is here
to demonstrate the existence of the described phenomena for
different sub-network sizes and not to detail the dynamics or
bifurcations. Since both parameter regimes display a roughly
uniform structure across all investigated sub-network sizes,
the respective dynamics can thus be observed for all these
cases, concluding that the phenomena exist independently
from the system’s size.

V. FROM NETWORKS OF NETWORKS OF EXCITABLE
UNITS TO COUPLED COMPLEX OSCILLATORS

In order to facilitate an understanding of the observed
phenomena, we now discuss how varying the within-network
and between-network coupling strength affects the effective
structure of our network. If the between-network coupling kB

is small (but not zero), the sub-networks interact only weakly.
If additionally kW is sufficiently large, i.e., inside the atypical
region, each sub-network can be viewed as a single, inde-
pendent higher-dimensional oscillator. Phase-locked periodic,
in-phase quasi-periodic, phase-locked periodic, anti-phase-
locked periodic, and lag-synchronous mixed-mode oscilla-
tions belong to this category. Our network of networks can
thus be considered as a system of two coupled identical oscil-
lators, each with a rich dynamical behavior, and the coupling
structure leads to the observed dynamics in the atypical region
in parameter space (see Fig. 8, left). This explains why the

FIG. 8. Sketch of the effective coupling structure for two n = 4 sized
sub-networks. The solid lines indicate the between-network coupling with
strength kB, dashed lines indicate the within-network coupling with strength
kW. The black and gray coloring indicate strong or weak coupling, respec-
tively. Left: For a small kB, the all-to-all topology becomes negligible,
particularly between the sub-networks, which results in two irreducible,
interacting higher-dimensional oscillators. An example for such a case is
a phase-locked periodic oscillation as obtained for (kW, kB) = (0.1, 0.0003)

(see Fig. 1, sixth column). Right: For sufficiently large values of kB, the all-
to-all coupling is effective, making the network of sub-networks reducible to
a single network/oscillator. All dynamics outside the borders of Fig. 3, i.e.,
outside the parameter range encircled by the dashed lines in Fig. 2, are exam-
ples of such. Each unit color denotes a different intrinsic parameter bi of a
unit. The sub-networks are structurally identical.

observed dynamical behaviors are richer than those for a
single network.47,50

On the other hand, if the between-network coupling kB is
sufficiently large, the all-to-all coupling dominates the dynam-
ics and the two sub-networks merge. All dynamics where
one cannot distinguish the state variables x̄1, x̄2 belong to
this category. This includes all dynamics with kB > 0.02.
Low-amplitude oscillations and mixed-mode oscillations are
examples of such a dynamics. Hence, the above point of
view is no longer valid, and our network of networks (with
n units each) behaves like a single network of 2n units, with a
modified within-network coupling strength (see Fig. 8, right).

VI. CONCLUSION

We investigated the dynamics of a network of all-to-all-
coupled, identical sub-networks consisting of diffusively cou-
pled, non-identical excitable units. Such a configuration natu-
rally leads to the question whether interdependence networks
are not just one bigger network whose (global) dynamics can
trivially be deduced from the dynamics of its components.
We identified a region in parameter space in which the inter-
play of within- and between-network couplings allows for a
richer dynamical behavior than can be observed for a single
sub-network. The existence of this region turned out to be
robust for a wide range of sub-network sizes. It is character-
ized by a within-network coupling that is large in relation to
the between-network coupling.

In some aspects of the dynamics, we find a typical behav-
ior of two coupled oscillators such as the emergence of
quasi-periodicity and phase-locked motion on the torus. In
other aspects of the dynamics, such as mixed-mode oscilla-
tions, the system behaves just like a bigger network. Both
aspects overlap in parameter space leading to multistability
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and exhibiting the two faces of dynamics as (i) just a bigger
network and as (ii) two coupled “oscillators,” where each such
oscillator is a sub-network.

The emergence of novel dynamics in this region indi-
cates that approximations of a network of networks by a
single (but bigger) network might not be accurate enough to
properly understand the complexity of dynamics on networks
of networks. Instead, we find two distinct behaviors – one
attributed to the coupling of two oscillators (sub-networks)
and another representing the bigger network – which coex-
ist in a region of multistability. Our findings thus support
recent perspectives on the irreducibility when representing
interdependent systems as networks of networks, such as
in spreading processes,53 ecological networks,54 biochemical
networks,55 transportation networks,56,57 or the brain,58 and
underline the necessity for network of networks analyses of
the underlying architecture.
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