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1 Introduction

The German energy revolution requires radical rethinking in business and science. A wide
range of measures have been adopted by politicians in the course of the gradual switch
to renewable energies: the last nuclear power plant is to be taken off the grid in 2022.
By 2025, 40 to 45 percent of the electricity consumed nationwide will be generated from
renewable energies. According to the coal commission’s recommendation, the last coal-
fired power plant should be shut down by 2038 at the latest. These and other changes will
gradually lead to a fundamental restructuring of the energy system. Wind turbines and solar
cells will be installed, power highways built and smart grids set up, energy infrastructures
connected and new electricity storage technologies researched.

As concrete as this may sound, many of the factors in the planning game are uncertain.
The development of the energy market is difficult to predict, and the climate outlook also
raises questions. How will the sun shine in 50 years? When and where will the wind blow?
Each eventuality that is fed into one of the analytical models for the energy systems of the
future as a measurement, assumption or probability produces a more complex picture. This
complexity is due to gigantic amounts of data that quickly push conventional computers
and algorithms to the limits of their capacity and performance. The challenges of the
energy system transformation are to a large extent challenges of information technology.

A widely used means in research and industry to analyse today’s and future energy
systems are Energy System Models (ESMs). Such models implement for instance the
hourly dispatch of power stations, power transfer, and long-term investment decisions,
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including sector coupling with transport and heating. As such, ESMs are key to enable
studies regarding policy design, analysis of technology pathways, or the analysis of future
energy systems. One of the most successful modelling and solution methods for modern
ESMs is linear programming. Linear programs (LPs) can be used to formulate and compute
cost-optimal states of an energy system and its extensions.

There has been tremendous progress in general LP solvers during the last 30 years.1, 2

Many LPs that were considered intractable two or three decades ago can now be solved
within seconds. Still, for large-scale LPs with hundreds of millions of variables and con-
straints such as those arising from high-resolution energy system models, even the best
commercial solvers can take prohibitively long to find an optimal solution. Moreover,
such large-scale problems might not even fit into the main memory of a modern desktop
machine. On the other hand, the increasing availability of distributed-memory parallel
computers offers a huge potential both for reducing solution time and avoiding memory
bottlenecks. Unfortunately, general state-of-the-art LP solvers cannot (efficiently) run on
distributed-memory systems. Therefore, one way forward is to develop more specialised
algorithms for a distributed parallel solution, exploiting structures commonly found in
ESMs.

Against this backdrop, the BEAM-ME project was initiated: an interdisciplinary re-
search project carried out between 2015 and 2019 as part of the sixth energy research
program of the German federal government (funding code: 03ET4023A-F). The partici-
pants were the Energy Systems Analysis Department of the German Aerospace Center, the
Jülich Supercomputing Centre at Forschungszentrum Jülich, the High-Performance Com-
puting Centre Stuttgart, the Mathematical Optimisation and Scientific Information Depart-
ment at Zuse Institute Berlin, the Institute of Mathematics at Technische Universität Berlin
and GAMS Software GmbH. This article describes the development and implementation
of massively parallel algorithms for linear ESMs within the BEAM-ME project. Also,
computational results for several large-scale ESMs will be presented.

2 Exhibiting Block Structure in Energy Systems Models

A typical structure observed in linear energy system models is the so-called general ar-
rowhead or doubly bordered block-diagonal form:

min
N∑

i=0

cTi xi

s.t. T0x0 = h0 (1)
T1x0 + W1x1 = h1 (2)
T2x0 + W2x2 = h2 (3)

...
. . .

...

TNx0 + WNxN = hN (4)
U0x0 + U1x1 + U2x2 · · · UNxN = hN+1 (5)
x0, x1, x2, · · · xN ≥ 0 (6)
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where ci, xi ∈ Rni , Ti ∈ Rmi×n0 , Ui ∈ RmN+1×ni for i ∈ {0, 1, . . . , N} and
Wi ∈ Rmi×ni for i ∈ {1, . . . , N}, with ni,mi ∈ N0 for i ∈ {0, 1, . . . , N} and
mN+1 ∈ N0. Note that also inequalities and variables bounds are allowed, but are not
presented here for the sake of simplicity. This LP structure is quite general and can also
be found in many applications beyond energy system modelling. Often, in an ESM each
i ∈ N corresponds to a point of time in a (discretised) time horizon. The linking vari-
ables x0 may describe investment decisions. The linking constraints Eq. 5 usually include
energy storage between two consecutive time steps.

For a typical ESM, the number of blocks that can be defined in the model depends on
the motivation behind the research question. If, for example, a calendar year is described
using time steps, a structure with 365 blocks based on the number of days can parallelise
the solution process. Or exactly twice as many blocks are defined and thus days and nights
are mapped separately. Not every block structure is equally suitable for the underlying
algorithms. Therefore, there are different application variants. The modelling language
GAMS was extended during the BEAM-ME project in such a way that the modeller can
easily determine the block structure(s) of existing models by annotating the decision vari-
ables. Fig. 1 visualises several such annotations for small-scale problems.

Figure 1. Non-zero plots of different block diagonal structures of a model instance. A challenge lies in finding
an annotation that defines a sufficient number of blocks for parallelisation without the gray blocks of the linking
variables and constraints becoming dominant.

3 A Parallel Interior Point Method for Linear Programs with
General Arrowhead Form

For general LPs the two major algorithmic classes are simplex and interior-point methods.3

Interior-point methods are often more successful for large problems, and they offer more
potential for parallelisation since the main computational effort usually goes into factoris-
ing matrices. For a particular class of arrowhead LPs, two-stage stochastic optimisation
problems, there exist already several distributed algorithms.4–6 Two-stage stochastic opti-
misation problems do not have linking constraints and the diagonal blocks are intrinsically
related. Both assumptions do not hold for typical ESMs. Moreover, a common feature
of ESMs is a huge amount of linking constraints and variables (often more than 100 000).
This large number of linking constraints and variables renders straightforward extensions
of previous work on stochastic optimisation problems prohibitive.

To allow for the parallel solution of large-scale ESMs, we have developed and imple-
mented several algorithms that are embedded within an interior-point method. Roughly
speaking, an interior point method iteratively moves towards an optimal solution to the

347



given LP. The major part of the parallelisation takes place within the solution of the lin-
ear system, arising in each step of the interior-point algorithm. By suitable projection and
permutation this linear system can be reduced to the following form:




K1 B1

. . .
...

KN BN
BT1 · · · BTN K0







∆z1

...
∆zN
∆z0


 =




b1
...
bN
b0


 (7)

where

Ki =

[
Di W

T
i

Wi 0

]
, K0 =



D0 T

T
0 UT0

T0 0 0
U0 0 0


 , Bi =

[
0 0 UTi
Ti 0 0

]
(8)

The parallelisation is realised as specialised Schur complement decomposition, consisting
of the following steps:

1. Multiply each row i = 1, ..., N of Eq. 7 by −BTi K−1
i .

2. Sum up all rows.

3. Solve
(
K0 −

N∑
i=1

BTi K
−1
i Bi

)
∆z0 = b0 −

N∑
i=1

BTi K
−1
i bi.

4. For each row i = 1, ..., N insert ∆z0 and compute ∆zi.

The matrix

C = K0 −
N∑

i=1

BTi K
−1
i Bi

is called the Schur complement of the above system. While most of the above steps can be
parallelised efficiently, the formation of the actual Schur complement and the solution of
the resulting linear system form a bottleneck and we have put great effort into improving
this part of the algorithm.

The implementation builds on the existing solver PIPS-IPM,7, 8 a solver for two-stage
stochastic quadratic programs. The first step was the extension of this solver to handle
linking constraints. Also, an interface to GAMS was implemented. However, a large num-
ber of further changes were necessary, to handle for example the strong linkage between
individual blocks in typical ESM LPs, or the bad condition of these LPs. Also, consider-
able work had to be put into bringing the sequential run time closer to that of the leading
commercial LP solvers (which have been developed over decades by the leading experts in
the field). Most important among the newly implemented (and designed) methods are

• multiple-corrector interior-point algorithms,

• parallel LP scaling methods,

• parallel presolving methods,
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• parallel preconditioning of the Schur complement.

More details on the preconditioned Schur complement approach can be found in Ref. 9.
The parallel presolving algorithms are described in Ref. 10. Overall, more than 60 000
lines of PIPS-IPM code have been modified or added, which constitutes more than half
of the entire active code base of the solver. Because of several requests from the energy
system community, the new solver will be made publicly available at the end of 2019. In
the remainder of this article, we will refer to the new solver as PIPS-IPM++, which is also
the current working name.

4 Numerical Results

The numerical results reported in this section were obtained on the supercomputer
JUWELS at the Jülich Supercomputer Centre. JUWELS is equipped with 2271 standard
compute nodes (Dual Intel Xeon Platinum 8168), each with 96 GB memory and 2x24
cores at 2.7 GHz. JUWELS also includes 240 large memory compute nodes with 192 GB
each (and otherwise the same configuration). The nodes are connected via a Mellanox
EDR InfiniBand high-speed network. Only the standard compute nodes were used for
PIPS-IPM++.

Within the BEAM-ME project modelling experts from GAMS together with energy
system modellers from the German Aerospace Center developed a simplified, but repre-
sentative, energy system model, called SIMPLE. While SIMPLE lacks many details that
are considered in full-fledged energy system models, it is easily adaptable in size (e. g. the
number of variables or diagonal blocks) and thus highly useful for testing new solution
approaches. Fig. 2 shows the scaling behaviour of PIPS-IPM++ on a relatively small SIM-
PLE instance (5 144 806 constraints and 5 681 482 variables) on up to 512 MPI processes.
Furthermore, the figure shows the scaling behaviour of a reduced version (denoted by New
solver reduced) of PIPS-IPM++ that just uses the Schur complement decomposition de-
scribed in Sec. 3, but none of the additionally implemented algorithms such as (distributed)
preconditioned, iterative solution, LP scaling, and presolving. For each MPI configuration
of PIPS-IPM++ (including the reduced version) two OpenMP threads were used. The fig-
ure also shows results for the leading four commercial LP solvers CPLEX 12.8a, Gurobi
8.1b, MOSEK 8.1c, and Xpress 8.4.7d – which can only run on shared-memory. Fig. 2
shows that the commercial solvers using one thread are considerably faster than PIPS-
IPM++ using one MPI process (and two OpenMP threads) – by a factor of 5 or more.
However, the commercial solvers do not exhibit a good scaling behaviour. Three of the
commercial solvers show a moderate speed-up up until 12 threads, but with more threads
the run-time even deteriorates. PIPS-IPM++ on the other hand scales reasonably well, and
requires merely 23 seconds with the maximum number of 512 MPI processes – whereas
no commercial solver achieves a run-time below 400 seconds. Furthermore, the results
of the reduced version of the new solver demonstrate that the straightforward application

ahttps://www.ibm.com/products/ilog-cplex-optimization-studio
bhttps://www.gurobi.com
chttps://www.mosek.com/
dhttps://www.fico.com/en/products/fico-xpress-optimization
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Figure 2. Scaling results of the leading commercial LP solvers (Solver 1,...,Solver 4) and PIPS-IPM++ (new
solver) on a SIMPLE instance. PIPS-IPM++ was run with 2 OpenMP threads per MPI process.

of the Schur complement decomposition without any additional techniques is not compet-
itive. Another notable observation is that PIPS-IPM++ is for this instance already on a
shared-memory architecture highly competitive with the commercial solvers: On 32 cores
(16 MPI processes, with two OpenMP threads each), PIPS-IPM++ is as fast as any com-
mercial solver – even if one looks at their best performance among all number of threads
used.

Further results are given in the following for the energy system models Premix11 and
ELMOD.12 REMix has been developed (primarily) for the analysis of long-term energy
scenarios with high shares of variable renewable energies. The ELMOD ESMs that we
consider are used to analyse the impact of growing shares of renewable energies on the op-
eration of the European transmission grid and the dispatch of conventional power plants.
The first two ELMOD instances (CWE) comprise the entire transmission grid of the Cen-
tral Western European region. For the other two instances (EU) this configuration was
further extended to a set of 19 European countries with detailed transmission grid repre-
sentation. This is the largest configuration currently possible for the ELMOD model and
no instance of this configuration could previously be solved. For comparison we use the
four state-of-the-art (commercial) LP solvers detailed above. We use 16 threads for each
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of the commercial solvers – with more threads usually a performance degradation occurs.
Note that none of the commercial solvers allow for the distributed parallel solution of LPs.
Tab. 1 shows results on JUWELS of PIPS-IPM++ (with 2 OpenMP threads per MPI pro-
cess) and the respective best commercial solver. ML signifies that the commercial solvers
ran out of memory, even on the large nodes of JUWELS. As to the instances solvable on
JUWELS, one notes that the run time per computing resources of PIPS-IPM++ is better
than the best result of the commercial solvers (19 compute nodes versus 1 compute node).

Size PIPS-IPM++ resources Run time (seconds)

Instance Variables Constraints Non-zeroes MPI processes Nodes PIPS-IPM++ Best commercial

YSSP exp 107 555 441 93 902 968 286 477 612 250 25 2311 ML
YSSP disp 94 965 730 81 314 846 225 032 421 350 35 931 ML
ELMOD CWE15 85 646 554 98 646 274 271 875 064 438 19 181 6 201
ELMOD CWE16 85 883 074 98 909 074 272 602 144 438 19 216 6 111
ELMOD EU15 224 677 686 254 304 961 712 452 541 876 38 1 245 ML
ELMOD EU16 226 061 766 256 284 723 717 436 984 876 38 1 119 ML
SIMPLE LARGE 227 060 381 206 036 266 818 449 005 1024 64 546 ML

Table 1. Computational results for large-scale instances.

5 Conclusion

The overall goal of the BEAM-ME project was to overcome the current performance lim-
itations of linear energy systems models by exploiting high-performance computing re-
sources. To achieve this goal on a broad scale, it was necessary to identify a common
property that could be exploited algorithmically and is shared by a large majority of ESMs:
block structure in the constraint matrix. The presence of this structure made it possible to
develop a distributed-memory interior-point solver that showed good scalability for ESMs
from different sources. This result stood out particularly in comparison to the poor scala-
bility of today’s state-of-the-art shared-memory solvers.

There are several paths for further development. One is the implementation of ad-
ditional presolving methods. To improve robustness of the algorithm, we also plan to
implement the homogeneous self-dual interior-point method.13 Yet another extension, that
is currently being implemented, is a hierarchical approach, which splits the Schur comple-
ment decomposition (and thus also the Schur complement) in several layers – with the aim
to handle energy system models with even stronger linkage than the ones considered here.

Although HPC resources are certainly not ubiquitous, we hope that this generality and
usability will help transfer the algorithmic progress achieved during the BEAM-ME project
into the regular practice of the energy systems community.
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JUWELS at Jülich Supercomputing Centre (JSC).

References

1. R. E. Bixby, Solving Real-World Linear Programs: A Decade and More of Progress,
Operations Research 50, 3–15, 2002.

2. J. Gondzio, Interior point methods 25 years later, European Journal of Operational
Research 218, 587–601, 2012.

3. R. J. Vanderbei, Linear Programming: Foundations and Extensions, International
Series in Operations Research & Management Science 196, Springer, Boston, 2014.

4. J. Barnett, J.-P. Watson, and D. L. Woodruff, BBPH: Using progressive hedging within
branch and bound to solve multi-stage stochastic mixed integer programs, Oper. Res.
Lett. 45, 34–39, 2017.

5. M. Colombo, J. Gondzio, and A. Grothey, A warm-start approach for large-scale
stochastic linear programs, Math. Program. 127, 371–397, 2011.

6. C. G. Petra, O. Schenk, and M. Anitescu, Real-Time Stochastic Optimization of Com-
plex Energy Systems on High-Performance Computers, Computing in Science & En-
gineering 16, 32–42, 2014.

7. M. Lubin, C. G. Petra, M. Anitescu, and V. Zavala, Scalable stochastic optimization
of complex energy systems, in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’11), Article No. 64,
2011.

8. C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner, An Augmented Incomplete Factor-
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12. F. Hinz and D. Möst, Techno-Economic Evaluation of 110 kV Grid Reactive Power
Support for the Transmission Grid, IEEE Transactions on Power Systems 33,
4809–4818, 2018.

13. Robert J. Vanderbei, The Homogeneous Self-Dual Method, in Linear Programming,
International Series in Operations Research & Management Science 114, Springer,
Boston, 361–381, 2008.

352


