001     874547
005     20210130004719.0
024 7 _ |a 2128/24558
|2 Handle
037 _ _ |a FZJ-2020-01502
041 _ _ |a English
100 1 _ |a Kräuter, Robert
|0 P:(DE-HGF)0
|b 0
111 2 _ |a NIC Symposium 2020
|c Jülich
|d 2020-02-27 - 2020-02-28
|w Germany
245 _ _ |a Machine Learning Applications in Convective Turbulence
260 _ _ |a Jülich
|c 2020
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
295 1 0 |a NIC Symposium 2020
300 _ _ |a 357 - 366
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1584432628_19473
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Publication Series of the John von Neumann Institute for Computing (NIC) NIC Series
|v 50
520 _ _ |a Turbulent convection flows are ubiquitous in natural systems such as in the atmosphere or in stellar interiors as well as in technological applications such as cooling or energy storage devices. Their physical complexity and vast number of degrees of freedom prevents often an access by direct numerical simulations that resolve all flow scales from the smallest to the largest plumes and vortices in the system and requires a simplified modelling of the flow itself and the resulting turbulent transport behaviour. The following article summarises some examples that aim at a reduction of the flow complexity and thus of the number of degrees of freedom of convective turbulence by machine learning approaches. We therefore apply unsupervised and supervised machine learning methods to direct numerical simulation data of a Rayleigh-Bénard convection flow which serves as a paradigm of the examples mentioned at the beginning.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
700 1 _ |a Krasnov, Dmitry
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pandey, Ambrish
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schneide, Christiane
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Padberg-Gehle, Kathrin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Giannakis, Dimitrios
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sreenivasan, Katepalli R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schumacher, Jörg
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
787 0 _ |i IsPartOf
|0 FZJ-2020-01353
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874547/files/NIC_2020_Schumacher.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874547/files/NIC_2020_Schumacher.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874547
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a TU Ilmenau
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a TU Ilmenau
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a TU Ilmenau
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Leuphana Universität Lüneburg
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Leuphana Universität Lüneburg
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a New York University
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a New York University
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a TU Ilmenau
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a New York University
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21