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Turbulent convection flows are ubiquitous in natural systems such as in the atmosphere or in

stellar interiors as well as in technological applications such as cooling or energy storage de-

vices. Their physical complexity and vast number of degrees of freedom prevents often an ac-

cess by direct numerical simulations that resolve all flow scales from the smallest to the largest

plumes and vortices in the system and requires a simplified modelling of the flow itself and

the resulting turbulent transport behaviour. The following article summarises some examples

that aim at a reduction of the flow complexity and thus of the number of degrees of freedom of

convective turbulence by machine learning approaches. We therefore apply unsupervised and

supervised machine learning methods to direct numerical simulation data of a Rayleigh-Bénard

convection flow which serves as a paradigm of the examples mentioned at the beginning.

1 Introduction

Machine learning algorithms,5 particularly in the form of multilayered deep neural net-

works, have lately found various new applications in the Big Data domain that increasingly

affects many fields of our daily life, e. g. by speech recognition tools in cellular phones.

These machine learning methods are yet about to find an established place in the modelling

and analysis of turbulent flows despite a few promising attempts.2 The comprehensive data

records needed for the algorithms come from full-scale supercomputer simulations of the

equations of fluid motion or laboratory experiments applying optical measurement tech-

niques. A proper assimilation and processing of this vast amount of data requires a change

of paradigms in data processing, structure recognition and subgrid modelling.

Machine learning can be classified into two big categories, supervised and unsuper-

vised machine learning. Supervision refers to a training of the algorithm with labelled

input-output examples. In the following, we review briefly our own machine learning anal-

yses with examples from both categories. The flow of interest is turbulent Rayleigh-Bénard

convection (RBC) which serves as a paradigm to many turbulent flows in nature and tech-

nology that are driven and sustained by temperature differences.1 On the one hand, we will
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apply unsupervised machine learning for the reconstruction of the large-scale circulation

(LSC) in a cubical closed convection cell by means of data-based Koopman eigenfunc-

tions.4 Unsupervised machine learning is also applied to study clusters of Lagrangian

particle trajectories in a large-aspect-ratio turbulent convection flow.12 On the other hand,

supervised machine learning algorithms in form of deep neural networks are taken to re-

duce the three-dimensional and fully resolved turbulent superstructures in the temperature

field of a Rayleigh-Bénard flow,9 to a two-dimensional planar temporal network6 of maxi-

mal and minimal temperature ridges with point defects.3

In all examples, we solve the three-dimensional Boussinesq equations of turbulent con-

vection by means of direct numerical simulations that resolve all relevant turbulence struc-

tures in the flow and provide the data base. They couple the velocity field u(x, t) with

the temperature field T (x, t). The equations are made dimensionless by using the height

of the layer or cell H , the free-fall velocity Uf and the imposed temperature difference

∆T between bottom and top. This implies a natural convective time unit, the free-fall time

Tf = H/Uf . The Boussinesq system contains the three control parameters: the Rayleigh

number Ra, the Prandtl number Pr and the aspect ratio Γ = L/H with the cell length

L = Lx = Ly that is set to values of Γ = 1, 16 or 25 in this work. The equations are given

by

∇ · u = 0 (1)

∂u

∂t
+ (u ·∇)u = −∇p+

√

Pr

Ra
∇

2
u+ Tez (2)

∂T

∂t
+ (u ·∇)T =

1√
RaPr

∇
2T (3)

No-slip boundary conditions for the fluid are applied at all walls, i. e. ui = 0. The side

walls are thermally insulated, i. e. ∂T/∂n = 0 with n being the normal direction. At the

top and bottom a constant dimensionless temperature of T = 0 and 1 is maintained, re-

spectively. The equations are numerically solved by the Nek5000 spectral element method

package.8, 11 In addition, Np massless Lagrangian tracer particles are advanced corre-

sponding to

dXj

dt
= u(Xj , t) (4)

with j = 1 . . . Np. The Lagrangian particles are advected by a 3-step explicit Adams-

Bashforth scheme. The interpolation of the velocity field to the particle position is done

spectrally. The turbulent convection flow can be considered as a nonlinear dynamical

system in a high-dimensional phase space M. The state vector of the RBC is given by

φm(t) = (u(xi, t), T (xi, t)) where xi are the coordinates of the grid points, i = 1, . . . , N .

With a total number of grid points of N it follows that dim(M) = 4N . The dynam-

ical evolution of the turbulent flow describes a trajectory in M which is determined

by φm(tk+1) = Fm(φn(tk), tk) where Fm is a nonlinear vector valued function with

m,n = 1, . . . , 4N . Here k = 1, 2, . . . , Nt with the number of time steps Nt.
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that start their evolution in close distance to each other is an immanent property of a turbu-

lent flow and can be quantified by the largest Lyapunov exponent which is also shown as a

background texture in the middle row panels of Fig. 2. Therefore, such a spectral cluster-

ing analysis is applicable for the shorter-time evolution only. For larger evolution times, a

density-based clustering of pseudo-trajectories, which are obtained as time averages of La-

grangian trajectories, was applied to probe the long-living patterns in the convection flow.

The latter analysis step gives us the most coherent subset of trajectories which are trapped

for a long time in the core of the circulation rolls.

3 Supervised machine learning application

Supervised machine learning makes use of the fact that it is often easier to train a system,

such as a deep convolutional neural network in the present case, with a number of labelled

examples of an intended input-output, than to develop a specific computer program to

provide the correct answer for all possible input data.

In Fonda et al. we discuss the application of a deep convolutional neural network

(DCNN) to quantify the role of turbulent superstructures in the turbulent heat transport.

We analysed data records that were obtained in a domain with a large aspect ratio of

25. The Prandtl number of the data sets was Pr = 7 and the Rayleigh numbers were

Ra = 105, 106, and 107. As already stated in the introduction, the superstructures mani-

fest as a temporal skeleton of ridges of hot upwelling and cold downwelling fluid with de-

fects where the ridges merge or end. We trained a DCNN to reduce the three-dimensional

temperature field to a temporal planar network in the midplane of the layer – a data com-

pression by more than 5 orders of magnitude at the highest Rayleigh number. The resulting

network quantified the turbulent heat transferred by the superstructure. Defect points that

disappear and form anew with time are found to be “hot spots”, which are points of locally

enhanced heat flux (see Fig. 5). It was shown that the fraction of heat carried by the su-

perstructure decreases as the Rayleigh number increases. We also found that an increasing

amount of heat is carried by the small-scale background turbulence from the bottom to the

top rather than by the coherent large-scale superstructure of the convection flow.

The convolutional deep neural network which we applied is U-shaped as seen in Fig. 3,

denoted as U-net for short.10 The U-net combines a contraction path of a standard con-

volutional neural network5 with a subsequent expansion path of concatenations and up-

convolutions that finally creates a detailed segmentation map. This U-net has been applied

successfully to image segmentation of touching objects, e. g. of neuronal cell structures in

electron microscopy data. The specific architecture of the U-net is essential for the present

usage in a large-aspect-ratio RBC flow as it requires small sets of manually annotated data

for the training only. This is in contrast to standard DCNNs for such images. The slow

evolution of the superstructures in the large-aspect-ratio domain would otherwise require

extremely long simulations of the full RBC flow over a few tens of thousands of convective

time units to obtain an appropriate amount of independent training data, as discussed by

Pandey et al.9

The U-net algorithm10 was used within the Tensorflow software environment14 in com-

bination with the application programming interface Keras.7 The temperature data in the

midplane were originally obtained at a 10242 resolution by a spectral interpolation onto

a Cartesian uniform mesh. We verified that a reduction of the resolution to 2562 grid
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and thus to construct effective small-scale parametrisations. These efforts are currently in

progress and will be reported elsewhere.
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