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R. Kräuter, D. Krasnov, A. Pandey, C. Schneide,
K. Padberg-Gehle, D. Giannakis, K. R. Sreenivasan, J.

Schumacher

published in

NIC Symposium 2020
M. Müller, K. Binder, A. Trautmann (Editors)

Forschungszentrum Jülich GmbH,
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Turbulent convection flows are ubiquitous in natural systems such as in the atmosphere or in
stellar interiors as well as in technological applications such as cooling or energy storage de-
vices. Their physical complexity and vast number of degrees of freedom prevents often an ac-
cess by direct numerical simulations that resolve all flow scales from the smallest to the largest
plumes and vortices in the system and requires a simplified modelling of the flow itself and
the resulting turbulent transport behaviour. The following article summarises some examples
that aim at a reduction of the flow complexity and thus of the number of degrees of freedom of
convective turbulence by machine learning approaches. We therefore apply unsupervised and
supervised machine learning methods to direct numerical simulation data of a Rayleigh-Bénard
convection flow which serves as a paradigm of the examples mentioned at the beginning.

1 Introduction

Machine learning algorithms,5 particularly in the form of multilayered deep neural net-
works, have lately found various new applications in the Big Data domain that increasingly
affects many fields of our daily life, e. g. by speech recognition tools in cellular phones.
These machine learning methods are yet about to find an established place in the modelling
and analysis of turbulent flows despite a few promising attempts.2 The comprehensive data
records needed for the algorithms come from full-scale supercomputer simulations of the
equations of fluid motion or laboratory experiments applying optical measurement tech-
niques. A proper assimilation and processing of this vast amount of data requires a change
of paradigms in data processing, structure recognition and subgrid modelling.

Machine learning can be classified into two big categories, supervised and unsuper-
vised machine learning. Supervision refers to a training of the algorithm with labelled
input-output examples. In the following, we review briefly our own machine learning anal-
yses with examples from both categories. The flow of interest is turbulent Rayleigh-Bénard
convection (RBC) which serves as a paradigm to many turbulent flows in nature and tech-
nology that are driven and sustained by temperature differences.1 On the one hand, we will
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apply unsupervised machine learning for the reconstruction of the large-scale circulation
(LSC) in a cubical closed convection cell by means of data-based Koopman eigenfunc-
tions.4 Unsupervised machine learning is also applied to study clusters of Lagrangian
particle trajectories in a large-aspect-ratio turbulent convection flow.12 On the other hand,
supervised machine learning algorithms in form of deep neural networks are taken to re-
duce the three-dimensional and fully resolved turbulent superstructures in the temperature
field of a Rayleigh-Bénard flow,9 to a two-dimensional planar temporal network6 of maxi-
mal and minimal temperature ridges with point defects.3

In all examples, we solve the three-dimensional Boussinesq equations of turbulent con-
vection by means of direct numerical simulations that resolve all relevant turbulence struc-
tures in the flow and provide the data base. They couple the velocity field u(x, t) with
the temperature field T (x, t). The equations are made dimensionless by using the height
of the layer or cell H , the free-fall velocity Uf and the imposed temperature difference
∆T between bottom and top. This implies a natural convective time unit, the free-fall time
Tf = H/Uf . The Boussinesq system contains the three control parameters: the Rayleigh
number Ra, the Prandtl number Pr and the aspect ratio Γ = L/H with the cell length
L = Lx = Ly that is set to values of Γ = 1, 16 or 25 in this work. The equations are given
by

∇ · u = 0 (1)

∂u

∂t
+ (u ·∇)u = −∇p+

√
Pr

Ra
∇2u + Tez (2)

∂T

∂t
+ (u ·∇)T =

1√
RaPr

∇2T (3)

No-slip boundary conditions for the fluid are applied at all walls, i. e. ui = 0. The side
walls are thermally insulated, i. e. ∂T/∂n = 0 with n being the normal direction. At the
top and bottom a constant dimensionless temperature of T = 0 and 1 is maintained, re-
spectively. The equations are numerically solved by the Nek5000 spectral element method
package.8, 11 In addition, Np massless Lagrangian tracer particles are advanced corre-
sponding to

dXj

dt
= u(Xj , t) (4)

with j = 1 . . . Np. The Lagrangian particles are advected by a 3-step explicit Adams-
Bashforth scheme. The interpolation of the velocity field to the particle position is done
spectrally. The turbulent convection flow can be considered as a nonlinear dynamical
system in a high-dimensional phase space M. The state vector of the RBC is given by
φm(t) = (u(xi, t), T (xi, t)) where xi are the coordinates of the grid points, i = 1, . . . , N .
With a total number of grid points of N it follows that dim(M) = 4N . The dynam-
ical evolution of the turbulent flow describes a trajectory in M which is determined
by φm(tk+1) = Fm(φn(tk), tk) where Fm is a nonlinear vector valued function with
m,n = 1, . . . , 4N . Here k = 1, 2, . . . , Nt with the number of time steps Nt.

358



2 Unsupervised machine learning applications

Unsupervised learning extracts features in (high-dimensional) data sets without pre-
existing labelled training data. These techniques are partly already well-established and
well-known. They comprise for example clustering and dimensionality-reduction tech-
niques, such as the well-known Dynamic Mode Decomposition.15 We will describe two
specific examples more detailed in the following.

Giannakis et al.4 discuss the long-time evolution of a three-dimensional turbulent RBC
flow in a closed cubic cell via the eigenfunctions of the linear Koopman operator Kt that
defines a new dynamical system which rather governs the evolution of observables onM
than the state vector φm(t) itself.15 The space of observables and thus Kt are infinite-
dimensional even though the associated nonlinear dynamical system is finite-dimensional.
In practice, one seeks a finite-dimensional representation of Kt; more detailed, a data-
driven basis is calculated here to represent a regularised generator V of the unitary Koop-
man group Ut = exp(tV ) in the sense of a Galerkin approximation. This is exactly
the point where unsupervised machine learning enters the scene. The goal is to find (or
better to geometrically learn) a possibly complicated curved submanifold N ⊂ M with
dim(N ) � dim(M) on which the few relevant degrees of freedom evolve that describe
the large-scale flow of the RBC setting effectively. This is done by a diffusion process on
the data snapshots, φi(tk), that quantifies the local connectivity of two system states i, j

Figure 1. Dynamical trajectory of a turbulent RBC flow in a closed cubical cell at Ra = 107. Shown is a
three-dimensional subspace with coordinates which are constructed from the primary Koopman eigenfunctions.
The trajectory is sampled over 104 convective free-fall time units Tf . The large-scale flow dynamics is found to
cluster in four macro-states A, B, C, and D that correspond to large-scale circulation rolls in the box across the
diagonals (two configurations times clockwise/counterclockwise spin). The figure is taken from Ref. 4.
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and the resulting transition probability (or the Markov operator) with a Gaussian kernel
which follows to

Pij =
1

C
exp

(
− 1

εQ

Q−1∑

q=0

‖ui−q − uj−q‖2L2

)
(5)

Here, C is a normalisation constant; we use the velocity field data only. The sum over q
stands for an additional time delay-averaging. The eigenvectors of Pij form the data-driven
basis in which we can compute the Koopman eigenfunctions afterwards.

The resulting Koopman eigenfunctions can be grouped into subsets in accordance with
the discrete symmetries in a cubic box. In particular, a projection of the velocity field onto
the first group of eigenfunctions reveals the four stable large-scale circulation (LSC) states
in the convection cell which are shown in Fig. 1. We recapture the preferential circulation

Figure 2. Lagrangian trajectory-based analysis of three-dimensional turbulent large-scale patterns in a RBC flow.
We advected 5122 individual Lagrangian tracers that started inside the thermal boundary layer at the bottom
plate. (a–c) Time-averaged temperature field in the midplane. Progressing averaging times are 2.6, 10.4, and
30.1 free-fall convective time units, respectively. In panel (c), the characteristic pattern scale λΘ ≈ 4H of
the turbulent superstructures is indicated by a double arrow. (d–f) Lagrangian trajectory clusters obtained from
the leading eigenvectors of the graph Laplacian matrix. Particles that belong to the same spectral cluster at the
corresponding time are coloured equally. The background contours are the ridges of the maximum finite-time
Lyapunov exponent. Ridges and clusters are indicated with respect to the initial Lagrangian particle position.
(g–i) Corresponding eigenvalue spectra of the graph Laplacian matrix. The spectral gap between eigenvalues no.
8-9, 12-13, and 14-15 is used to detect k = 8, 12, and 14 trajectory clusters by a standard k-means clustering
algorithm, respectively. The parameters are (Ra, Pr,Γ) = (105, 0.7, 1) for this simulation. The figure is taken
from Ref. 10.

360



Figure 3. Workflow within the U-shaped deep neural network. The resolution of the image (or feature map) and
the number of images are indicated at each step. At the bottom of the figure, we display some levels of the data
processing within the hidden layers. The thumbnail contour plots are centred with respect to the corresponding
hidden layer. Convolution and max-pooling operations are indicated in the legend. There are a total of 28 layers
and 1 940 817 parameters. Figure is taken from the supplementary information of Ref. 3.

rolls in diagonal corners and the short-term switching through roll states parallel to the
side faces which have also been seen in other simulations and experiments. The diagonal
macroscopic flow states can last as long as 1000 convective free-fall time units.

Schneide et al.12 applied two unsupervised machine learning techniques to a three-
dimensional RBC flow with aspect ratio Γ = 16 – spectral clustering and density-based
spatial clustering applications with noise (DBSCAN) – in order to analyse the time evolu-
tion of a Lagrangian particle ensemble in the RBC flow as a whole. To this end, the particle
trajectories are composed into a network and its connection to the large-scale organisation
of an extended three-dimensional turbulent convection flow – termed turbulent superstruc-
tures of convection – was studied. The set ofNp individually advected Lagrangian particles
at a time t forms a set of vertices {v1, . . . , vNp} ∈ V of a weighted and undirected graph
G = (V,E,w). The vertices are connected by edges {e1, . . . , eM} ∈ E. The dynamical
history of the particle ensemble up to time t can then be encoded into the weights w which
are assigned to each edge. These weights are calculated as the inverse of a time-averaged
distance of mutual tracer trajectories and set to zero if this distance exceeds a threshold
value.12 The latter is the graph sparsification step. By solving a balanced cut problem via
an equivalent generalised eigenvalue problem of the Laplacian matrix of the graph13 and a
subsequent k-means clustering of the leading eigenvectors, the network is decomposed into
k subgraphs or clusters. The obtained clusters of the graph could be related to large-scale
ridge patterns of temperature as seen in Fig. 2. The dispersion of the Lagrangian particles
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that start their evolution in close distance to each other is an immanent property of a turbu-
lent flow and can be quantified by the largest Lyapunov exponent which is also shown as a
background texture in the middle row panels of Fig. 2. Therefore, such a spectral cluster-
ing analysis is applicable for the shorter-time evolution only. For larger evolution times, a
density-based clustering of pseudo-trajectories, which are obtained as time averages of La-
grangian trajectories, was applied to probe the long-living patterns in the convection flow.
The latter analysis step gives us the most coherent subset of trajectories which are trapped
for a long time in the core of the circulation rolls.

3 Supervised machine learning application

Supervised machine learning makes use of the fact that it is often easier to train a system,
such as a deep convolutional neural network in the present case, with a number of labelled
examples of an intended input-output, than to develop a specific computer program to
provide the correct answer for all possible input data.

In Fonda et al. we discuss the application of a deep convolutional neural network
(DCNN) to quantify the role of turbulent superstructures in the turbulent heat transport.
We analysed data records that were obtained in a domain with a large aspect ratio of
25. The Prandtl number of the data sets was Pr = 7 and the Rayleigh numbers were
Ra = 105, 106, and 107. As already stated in the introduction, the superstructures mani-
fest as a temporal skeleton of ridges of hot upwelling and cold downwelling fluid with de-
fects where the ridges merge or end. We trained a DCNN to reduce the three-dimensional
temperature field to a temporal planar network in the midplane of the layer – a data com-
pression by more than 5 orders of magnitude at the highest Rayleigh number. The resulting
network quantified the turbulent heat transferred by the superstructure. Defect points that
disappear and form anew with time are found to be “hot spots”, which are points of locally
enhanced heat flux (see Fig. 5). It was shown that the fraction of heat carried by the su-
perstructure decreases as the Rayleigh number increases. We also found that an increasing
amount of heat is carried by the small-scale background turbulence from the bottom to the
top rather than by the coherent large-scale superstructure of the convection flow.

The convolutional deep neural network which we applied is U-shaped as seen in Fig. 3,
denoted as U-net for short.10 The U-net combines a contraction path of a standard con-
volutional neural network5 with a subsequent expansion path of concatenations and up-
convolutions that finally creates a detailed segmentation map. This U-net has been applied
successfully to image segmentation of touching objects, e. g. of neuronal cell structures in
electron microscopy data. The specific architecture of the U-net is essential for the present
usage in a large-aspect-ratio RBC flow as it requires small sets of manually annotated data
for the training only. This is in contrast to standard DCNNs for such images. The slow
evolution of the superstructures in the large-aspect-ratio domain would otherwise require
extremely long simulations of the full RBC flow over a few tens of thousands of convective
time units to obtain an appropriate amount of independent training data, as discussed by
Pandey et al.9

The U-net algorithm10 was used within the Tensorflow software environment14 in com-
bination with the application programming interface Keras.7 The temperature data in the
midplane were originally obtained at a 10242 resolution by a spectral interpolation onto
a Cartesian uniform mesh. We verified that a reduction of the resolution to 2562 grid
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Figure 4. Input and output of the U-net. (A) Original two-dimensional and time-averaged temperature slice for
Ra = 107 and Pr = 7. (B) Corresponding symmetrised temperature field Θ(x, y) that enters the U-net.
(C) Ridge pattern as output of the U-net. (D) Comparison with a simple thresholding set. Blue pixels are for
cold downflows and red pixels for hot upflows. These ridges have a strongly varying thickness and are partly
interrupted when a simple thresholding is conducted. The figure is taken from Ref. 3.

points that cover the whole plane is sufficient to capture the ridge pattern. The training
of the neural network for 1000 epochs took about 15 minutes on a cluster with NVIDIA
GeForce GTX 1080. Note, however, that even 100 epochs were enough in our case. Fig. 4
demonstrates the extraction of the ridge pattern by the deep neural network, even though
the data were for the highest Rayleigh number case very noisy. Input to the U-net is the
symmetrised temperature field which is given by Θ(x, y) = |T (x, y, z = 1/2)− 1/2| and
shown in panel B of the figure.

Since supervised machine learning is highly sensitive to the quality of the training data,
the annotation of the samples is a key task. Different Rayleigh and Prandtl numbers cause
changes in the sharpness, the size, and the amount of noise of the underlying ridge network
of temperature field superstructures. In Fonda et al.3 the trends with Rayleigh number at
Pr = 7 were investigated. Here, we will take a closer look at the Prandtl number depen-
dence at fixed Ra that affects the superstructures in a different way as discussed in Pandey
et al.9 in detail. Two scenarios were tested. In the first case, we created training data
for the U-net based on low-noise snapshots with a clearly visible ridge network (see Fig. 5
(A, E)). The samples were highly augmented by several geometric and photometric manip-
ulations including artificial blurring, addition of noise and distortion. In the second case,
examples from three different Prandtl numbers, Pr = 7, 0.7 and 0.021, were combined for
the training of the U-net leaving the corresponding manual annotations of the ridges much
less detailed. It is found that the training data that contained many details and were highly
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Figure 5. Different training data annotations of the symmetrised temperature field Θ(x, y) all for a Rayleigh
number Ra = 105. (A, E) sample and annotation for Pr = 7. (B, F) again for Pr = 7. (C, G) for Pr = 0.7,
and (D, H) for Pr = 0.021. All input data are normalised such that they vary between 0 to 1 and can be
combined. The colour bars below the top row of panels also indicate the corresponding mean value.

augmented (case 1) slow down the convergence of the DCNN significantly. The corre-
sponding U-net gives very detailed image segmentations. In contrast, the U-net which was
trained with examples from all three simulation records (case 2) converged faster and pro-
duced segmentations that show the coarsest ridges only. The results of the ridge extraction
with both U-nets are summarised in Fig. 6 for two different Prandtl numbers. Depending
on the subsequent use of the output, one either obtains a fine-scale segmentation or a much
coarser ridge pattern. Our present results show clearly that the application of the U-net be-
comes more challenging as the Prandtl number decreases. In these cases, the ridge patterns
of the symmetrised temperature are more washed out due to the more vigorous fluid turbu-
lence and the ridges appear to be more disconnected. Clearly, even the U-net approaches
here its limitations.

The extracted ridge networks, as obtained in Fig. 6 (C, G), were subsequently used
to quantify the heat transport across the convection layer. The dimensionless number that
measures the turbulent heat transport in RBC is the Nusselt number, which is given by
Nu = 1 +

√
RaPr〈uzT 〉V,t with the vertical velocity component uz , the temperature

T , and the combined volume-time average 〈·〉V,t. In Fig. 7 (A) we compare Nu with a
Nusselt number that measures the transport across the ridge network (and thus due to the
turbulent superstructure (TSS)). It is given byNuTSS =

√
RaPr we〈uzΘ〉r. Here, we is a

weight factor that represents the area fraction of the network compared to the area content
of the horizontal plane and r a segment of unit length in the ridge network. Fig. 7 (B-D)
show the transport capability of the ridge network for three Pr. The heat flux by the
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Figure 6. Output of the U-net for Pr = 0.7 (top row) and Pr = 0.021 (bottom row), both atRa = 105. (A, E)
Normalised input data of symmetrised temperature. (B, F) U-net output when trained with detailed annotation
and high augmentation rate. (C, G) Conversion of (B, F) into a binary data set with a threshold of 0.5 is shown.
(D, H) Direct output result of the U-net trained with less detailed annotations.

Figure 7. Turbulent heat transport analysis across the ridge network. (A) Mean convective heat transport across
the whole plane (green) and transport due to the ridge network (red). (B-D) Amount of heat transport across the
network vs. time and area fraction of the network vs. time. Data are for at Ra = 105 and Pr = 0.021 in B,
Pr = 0.7 in C and Pr = 7 in D.

network increases faster than the area occupied by it with increasing Pr, suggesting that
the transport by the ridge network becomes more efficient.

4 Concluding remarks

We have discussed a number of applications of unsupervised and supervised machine learn-
ing in turbulent convection. They were used to extract coherent patterns in these flows and
to reduce the big amount of three-dimensional simulation data effectively. As in many
other applications, we showed that the success of supervised machine learning with DC-
NNs is tightly related to the training methods. Future tasks in this field are related to
predictions of turbulent flow behaviour itself, e. g. by the use of recurrent neural networks
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and thus to construct effective small-scale parametrisations. These efforts are currently in
progress and will be reported elsewhere.
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