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John von Neumann Institute for Computing (NIC),
Schriften des Forschungszentrums Jülich, NIC Series, Vol. 50,
ISBN 978-3-95806-443-0, pp. 367.
http://hdl.handle.net/2128/24435

c© 2020 by Forschungszentrum Jülich
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While for the design point operation of centrifugal pumps, where an essentially steady flow field

is present and statistical turbulence models yield an appropriate prediction of the characteris-

tics, the flow field gets increasingly unsteady towards off-design operation. Special designs as

e. g. sewage pumps are characterised by a single-blade impeller and show significantly unsteady

characteristics even in the design point. For such highly-unsteady and turbulent flow fields, sta-

tistical models tend to fail. On the other hand, Large-Eddy Simulation models, where the large-

vortex part of the turbulent spectrum is directly resolved, show a much better flow prediction.

However, the spatial resolution and thus computational effort are too high for engineering real

pump applications. Therefore, we provide an assessment of scale-adaptive turbulence simula-

tion (SAS) models that recover a statistical flow solution in regions of low unsteadiness and –

like Large-Eddy Simulation – resolve a part of the turbulent spectrum down to the available grid

resolution for highly unsteady flow regions. After a thorough validation on standard turbulence

test cases e. g. the periodic hill case, it is shown that with a moderately higher computational

effort than statistical models, the SAS yields a considerable improvement of the prediction of

the turbulence field in part load operation of a centrifugal pump while the mean flow field could

be well predicted even with a well-established statistical model.

1 Introduction

Increasing demands on centrifugal pumps, e. g. by legislature, require higher efficiencies

even at off-design operation, i. e. part load and overload, which are characterised by a

highly unsteady and turbulent flow field due to flow separation and impeller-stator inter-

action. CFD methods are increasingly integrated in the design and optimisation process

of pumps. Statistical (i. e. URANS) eddy-viscosity turbulence models are widely used

for pump flow simulations. In this class of turbulence models, a significant simplifica-

tion is introduced by an a priori time-average of the turbulent fluctuations. Thus, the

resulting Reynolds-stress tensor has lost any spectral information of the turbulence field.

Although statistical models may yield a good prediction of pump characteristics at close-

to-design operation, they may increasingly fail towards off-design pump operation. In a

previous study, a comparison of spatially and temporally high resolved measurement data

to URANS simulations with the k-ω-Shear Stress Transport (SST) turbulence model1 (re-

ferred to as SST in what follows) revealed that, although time-averaged head and ensemble-

averaged flow angle were in good agreement for design and part load operation, turbulence

intensity (TI) is over-predicted especially in part load operation near the volute tongue.2

There are several other studies that show limitations of statistical models and benefits of

scale-resolving Large-Eddy Simulation models (LES).3–12 However, the computational ef-

fort of LES is tremendous at high Reynolds numbers encountered in centrifugal pumps

because at least 80 % of the spectral energy must be resolved13, 14 and a soundly resolved

LES demands therefore an extensively high number of computational cells and very small

367



time steps. In most LES studies on centrifugal pumps, it remains unclear if a sufficient

amount of the spectral energy is resolved to fulfil the LES criteria.

An interesting approach is the Scale-Adaptive Simulation method,15 which is an im-

provement of statistical models with the ability to resolve the turbulent spectrum down to

the available grid limit. This is achieved by a reduction of turbulent viscosity depending

on the von Karman length scale and the integral length scale. A variant of this model is

the k-ω-SST-SAS model (referred to as SAS).16 Especially the fall-back of the SAS to

a SST solution in regions of low spatial and temporal resolution is a convenient way to

avoid uncertainties in spectral energy resolution.16 Several studies show the improvement

of prediction accuracy of this type of model in highly transient flow compared to statistical

turbulence models.5, 8, 12, 17, 18 However, in these studies it remains unclear what the “crit-

ical” spatial grid resolution is to activate the scale-resolving capability of SAS and thus to

achieve an improvement over SST solutions. Therefore, we want to assess the capability

of the SAS model with focus on grid dependence for centrifugal pump flow.

2 Numerical Method and Validation

The incompressible Navier-Stokes equations in their unsteady Reynolds-averaged form

(URANS) are solved by the open source software foam-extend version 4.0.a The software

foam-extend is a C++ toolbox for the development of customised solvers. A conservative

finite volume co-located unstructured spatial discretisation is chosen. We utilise central dif-

ferences in combination with second order total variation diminishing (TVD) differencing

schemes for convective fluxes for scale resolving turbulence models. An implicit pressure

based solver is utilised, i. e. a combined PISO19 and SIMPLE20 algorithm for incompress-

ible unsteady flows since it is the most efficient choice for relatively small time steps with

a Courant number ∼ 1. We combine this solver with moving mesh capabilities. For the

evaluation of convergence of the non-linear iterative PISO-SIMPLE algorithm, prelimi-

nary investigations have shown that a drop of the non-linear non-dimensional residual sum

norm of each equation below a value of 10−5 is a suitable convergence criterion. While the

statistical two-equation eddy-viscosity SST turbulence model by Menter1 has been already

available in the standard package of the software, we have implemented an SAS extension

by Menter.16 The statistical (SST) and scale-adaptive (SAS) variant only deviate by an

additional source term in the dissipation scale (ω) equation so that the computational effort

is essentially the same if the temporal and spatial resolution is the same.

To show the performance of the SAS, we have investigated several standard test cases

that have been optimised for turbulence model assessment. E. g. in the channel and duct

flow as well as asymmetric diffusor case (not shown here) the SAS model is not able to

switch from URANS to scale-resolving simulations without an explicit introduction of syn-

thetic turbulence and thus falls back to the statistical SST solution as has been observed

also in other studies, e. g. Mehdizadeh et al.21 Thus, we focus on the “periodic hill” test

case where the periodic in- and outflow conditions support an amplification of model inac-

curacies and is thus particularly challenging for turbulence models. In fact, the statistical

SST variant completely fails to predict the separation and re-attachment location of the

pronounced separation downstream of the hills (not shown here). On the other hand, we

ahttp://foam-extend.fsb.hr/
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turbulent fluctuations.

TIEXP =
RMS(cabs)

u2

(2)

u2 is the circumferential impeller trailing edge velocity. For the simulations, a TI compa-

rable to measurements is evaluated by taking into account temporally resolved URANS-

velocity fluctuations (Eq. 3) and ensemble-averaged turbulent kinetic energy k (Eq. 4):

TIRMS =

√

RMS2(cabs,Sim)

u2

(3)

TITKE =

√

2kSim

u2

(4)

k corresponds to a priori time-averaged fluctuation in the URANS approach. Thus, total

TI is evaluated according to Eq. 5 in the simulation.

TISIM =

√

(RMS2(cabs,Sim) + 2kSim)

u2

(5)

For further information on the evaluation methods, we refer to Casimir et al.2 and Pesch

et al.26

4 Numerical Setup

The computational domain contains the impeller, volute casing, side chambers and the

suction and pressure pipe, c. f. Fig. 3(c). The suction pipe has been elongated to a length of

5×D to avoid an impact of boundary conditions on the part load vortex. A block structured

hexahedral grid as shown in Fig. 3(b) with approximately 3 million nodes (named G1) is

generated. For a grid study, the grid G1 is successively refined to approximately 24 million

nodes (named G2) by bisection of node distances in each direction. For G1, average and

maximum y+ values equal about 10 and 60, and for G2 about 5 and 30, respectively. The

fluid is incompressible air with a kinematic viscosity of ν = 10−5m2/s.

A Dirichlet inlet boundary condition is set for velocity according to flow rates from

experiment, together with a Neumann (zero-gradient) condition for static pressure. At the

volute discharge, a Neumann boundary conditions is set for velocity (zero gradient) and

a Dirichlet condition for static pressure. Temporal and spatial second order discretisation

methods are used. Tabs. 1 and 2 list the settings for SST and for SAS simulations, re-

spectively. As the time step size needs to be small with the SAS model (CFLmax < 1),

the solver is run in PISO mode, i. e. only one outer corrector step is performed for SAS

simulations.

The rotating domain includes the suction pipe, impeller and side chambers, and the

stationary domain includes the volute-casing and discharge pipe, c. f. Fig. 3(c). The gov-

erning equations are solved in the absolute frame of reference so that a moving grid is

applied for the rotating domain. Thus, the rotor and the stator grid need to be coupled at

each time step. Transient coupling of rotor and stator domain is achieved by a General

Grid Interface (GGI) algorithm by Beaudoin and Jasak30 that allows a non-conformal grid,

i. e. non-matching grid nodes on both, rotor and stator side of the interface. As described by
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Parameter Description

Turbulence model SAS16

Wall functions see Tab. 1

Time discretisation Backward Euler

Discretisation (div U) DESHybrid29

Discretisation (k and ω) vanLeer28

Linear solver for p BiCGStab

Linear solver for U, k, ω smoothSolver

Time step size 1/32 ◦
→ CFL < 1

nCorrectors (PISO loops) 2

nOuterCorrectors (PIMPLE loops) 1

Table 2. Summary of the numerical setup for SAS simulations.

For implicit pressure based solvers, a large part of the computational resources in terms

of CPU-time are utilised for solving the pressure equation. Preconditioned conjugated gra-

dient solvers (PCG) for the solution of the linear equation system have been found to be

most efficient. The re-calculation of the flux assignments at the rotor-stator interface after

each mesh motion step also contributes considerably to the resources. The code is paral-

lelised with OpenMPI. For the benchmark, SAS simulations on a grid of 24 million cells

with up to 20 computational nodes (960 Cores) are performed on the JUWELS cluster. A

constant number of pressure iterations per time step is specified for the scaling assessment.

A total amount of 4 time steps is calculated and one write operation of the solution is con-

sidered for the benchmark. The resulting scaling characteristics are shown in Fig. 4. It is

noticeable, that the scaling behaviour is nearly ideal up to 12 nodes (42 000 cells per core),

which is mainly related to the excellent scalability of the PCG solver. The used amount of

memory per node is approximately 16 GB.

Regarding data storage, large write operations are done for full-3D backup results with

a size of ∼5 GB and a temporal interval of 5 minutes on 960 cores, while more frequent

write operations are performed for monitoring results every 4 seconds with ∼20 MB of

data.

5 Results

Ensemble-averaged mean flow angle α and TI are evaluated in the measurement plane

in the impeller wake and compared between measurement and simulation for part load,

i. e. at 40 % of the nominal pump load. In this off-design operation, turbulent flow un-

steadiness is highly distinctive. Statistical convergence of the measurements is achieved by

an ensemble-average over more than 100 impeller revolutions. For ensemble-averaging, 7

values per revolution are available for the 7-blade impeller. For SAS simulations, less revo-

lutions are considered for ensemble-averaging due to the limit of computational resources,

what results in a significantly smaller amount of samples than for the measurements.
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Figure 4. Scaling characteristics on JUWELS with a problem size of 24 million cells.
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Figure 5. Ensemble-average flow angle (a) and turbulence intensity (b) for different circumferential volute posi-

tions ε.

Fig. 5(a) shows a comparison of an ensemble-averaged flow angle between SST, SAS

and measurement data for two different volute positions near ε = 0◦ and far off the vo-

lute tongue at ε = 240◦. A noisy appearance of the contour plots shows that statistical

convergence has not been achieved completely yet for the SAS simulations. Nevertheless,

since preliminary evaluations of different numbers of ensembles did not show a significant

change of the relevant pattern, a sufficiently reliable assessment of the SAS flow angle in

comparison to both SST results and measurement data is assumed to be feasible. No sig-

nificant mesh dependence is observed for the flow angle. The flow at the volute tongue at

ε = 0◦ is dominated by an outflow around the blade trailing edge (near x/t=0 and x/t=1)

and a secondary back flow near the sidewalls (y/b=0 and y/b=1) at mid-channel (x/t=0.5).

This behaviour can be seen on both grids for SAS and SST. Thus, SAS and SST results

can be considered equally close to measured flow angle in terms of spatially resolved and

ensemble-averaged flow angle.
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Figure 6. Axially and time-averaged TI for simulation and measurement data (a) and contributions to TI for the

SAS model (b).

Regarding the TI results, for the SST model a significant overestimation can be seen

in the immediate vicinity of the volute tongue at ε = 0◦ (c. f. Fig. 5(b), left column) that

gets even more pronounced with grid refinement. The TI is reduced significantly with the

SAS model and thus matches the experimental data much better, particularly for the finer

grid G2, what is a distinctive improvement of TI prediction. In the other volute regions

in circumferential direction, here represented by the ε = 15◦ position, TI is over-predicted

systematically by both models.

Fig. 6(a) shows the axially and time-averaged TI distribution vs. circumferential volute

position ε, where this behaviour is reflected over the entire spectrum of ε. In Fig. 6(a) TI

for the simulation has been evaluated by Eq. 2. In order to provide a more comprehensive

illustration of TI by the SAS model, Fig. 6(b) shows the two contributions to TI according

to Eqs. 3 and 4. The amount of TIRMS is higher for G2 which shows the scale-adaptive be-

haviour of the model, as with grid refinement the amount of resolved turbulent fluctuations

increases. TITKE is lower for grid G2. Interestingly, the discrepancy of total TI to measure-

ment data cannot be reduced by grid refinement. We assume that, since G1 and G2 are still

in the range of wall functions, this may be a consequence of the impeller wake flow, and

a wall-adjacent grid refinement towards low-Reynolds wall treatment in the impeller may

improve the results, which will be the subject of further investigations.

6 Conclusions

Deviations of the ensemble-averaged flow angle to measurement data are small for both

turbulence models, so that the SST model is found to be sufficiently accurate for mean

flow prediction, e. g. mean flow angle. A different conclusion can be drawn for turbulent

quantities, such as TI. A significant improvement of TI prediction near the volute tongue

is found for the SAS model compared to SST results. Afar from the volute tongue, total TI

is overestimated with both turbulence models. In particular the fact that a grid refinement
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does not reduce the entire TI level (TIRMS and TITKE) for the SAS model will be the subject

of further studies.

The results presented on the 7 blade specific speed nS = 26 min−1 pump are an ex-

tract of our pump simulation efforts and are representative of our turbulence modelling

approach. A highly unsteady flow field that demands accurate turbulence predictions is

also present in extremely low specific speed pumps (nS < 12 min−1) and special designs,

such as single-blade pumps or positive displacement pumps. The findings presented here

will also be transferred to these pump types.

Although we could show that the SAS model in its present form shows an improvement

over the SST model even on a moderate grid resolution, a further improvement to obtain

also a quantitative agreement to measurement data will be done in further studies by a

thorough exemplary assessment vs. reference simulation data in terms of well-resolved

LES results.
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