001     874550
005     20220930130232.0
024 7 _ |a 10.1038/s41597-020-0450-6
|2 doi
024 7 _ |a 2052-4436
|2 ISSN
024 7 _ |a 2052-4463
|2 ISSN
024 7 _ |a 2128/24664
|2 Handle
024 7 _ |a altmetric:78962878
|2 altmetric
024 7 _ |a pmid:32245972
|2 pmid
024 7 _ |a WOS:000524313800001
|2 WOS
037 _ _ |a FZJ-2020-01504
082 _ _ |a 500
100 1 _ |a Naz, Bibi S.
|0 P:(DE-Juel1)169794
|b 0
|e Corresponding author
245 _ _ |a A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015
260 _ _ |a London
|c 2020
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617695658_23215
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-resolution soil moisture (SM) information is essential to many regional applications in hydrological and climate sciences. Many global estimates of surface SM are provided by satellite sensors, but at coarse spatial resolutions (lower than 25 km), which are not suitable for regional hydrologic and agriculture applications. Here we present a 16 years (2000–2015) high-resolution spatially and temporally consistent surface soil moisture reanalysis (ESSMRA) dataset (3 km, daily) over Europe from a land surface data assimilation system. Coarse-resolution satellite derived soil moisture data were assimilated into the community land model (CLM3.5) using an ensemble Kalman filter scheme, producing a 3 km daily soil moisture reanalysis dataset. Validation against 112 in-situ soil moisture observations over Europe shows that ESSMRA captures the daily, inter-annual, intra-seasonal patterns well with RMSE varying from 0.04 to 0.06 m3m−3 and correlation values above 0.5 over 70% of stations. The dataset presented here provides long-term daily surface soil moisture at a high spatiotemporal resolution and will be beneficial for many hydrological applications over regional and continental scales.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a EoCoE-II - Energy Oriented Center of Excellence : toward exascale for energy (824158)
|0 G:(EU-Grant)824158
|c 824158
|f H2020-INFRAEDI-2018-1
|x 1
536 _ _ |a Water4Enery (jibg31_20190501)
|0 G:(DE-Juel1)jibg31_20190501
|c jibg31_20190501
|f Water4Enery
|x 2
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Geosciences
|0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 1
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 2
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 3
700 1 _ |a Kurtz, Wolfgang
|0 P:(DE-Juel1)140349
|b 4
773 _ _ |a 10.1038/s41597-020-0450-6
|g Vol. 7, no. 1, p. 111
|0 PERI:(DE-600)2775191-0
|n 1
|p 111
|t Scientific data
|v 7
|y 2020
|x 2052-4436
856 4 _ |u https://juser.fz-juelich.de/record/874550/files/s41597-020-0450-6.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/874550/files/s41597-020-0450-6.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:874550
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129506
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI DATA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI DATA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21