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Soil moisture (SM) is characterized by complex dynamics across a wide range of spatial and temporal scales1 
that can impact hydrological processes such as runo�, evaporation and transpiration from vegetation through 
changing soil moisture2. As a result, accurate characterization of spatial distribution and temporal variations 
of SM is critical for many regional–scale applications, including weather predictions, subsurface hydrology, 
�ood forecasting, drought monitoring, agriculture and climate change impact studies1–3. However, SM remains 
a di�cult variable to obtain over large scale with reasonable temporal and spatial resolution, because there are 
no high-resolution soil moisture observations available at the continental scale and observations of SM from 
measurements are very sparse. While remote sensing (RS) products give reliable estimates and cover large 
areas4–6, most long-term soil moisture data from spaceborne remote sensors have relatively low spatial resolu-
tion (in the order of 25 to 50 km) and they are spatially and temporally discontinuous7,8. An alternative source 
of high-resolution SM estimates is from land surface models (LSM). However, predictions are o�en poor due to 
inadequate model physics, poor parameter estimates and erroneous atmospheric forcings9. Soil moisture reanal-
ysis products are therefore needed which can provide downscaled estimates of SM with complete spatiotempo-
ral coverage by merging coarse-resolution SM observations with a high resolution LSM using data assimilation 
(DA) techniques3,10–13. �ese products overcome the shortcomings of sparse spatial and temporal distributions 
in observations and provide a better estimate of SM than obtained only by modeling or by satellite observations 
alone. Soil moisture reanalysis provides unique and consistent datasets for studying complex spatial patterns of 
SM from regional to global scales and temporal variability from daily to annual scales1,14. Moreover, the relation-
ship to other essential climate variables, such as runo� or evapotranspiration, can be investigated in more detail. 
It can also be used as initial input for climate change analysis and numerical simulations and for cross-validation 
of SM outputs in modeling studies.
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Several commonly used long-term soil moisture global datasets exist from land surface DA systems15–17, as 
listed in Table 1. �e focus of these reanalysis systems has been on the assimilation of meteorological observa-
tions, except for the Global Land Evaporation Amsterdam Model (GLEAM, v3.2a)18 product which assimilate 
surface SM. �e overall goal of these products is to provide estimates of atmospheric, land and oceanic climate 
variables. At the European regional scale, there have been few studies which provide soil moisture reanalysis 
through DA techniques by assimilating surface soil moisture information from satellite into land surface mod-
els10,19–23. �ough these global and regional reanalysis products are an attractive data source, they have a relatively 
coarse resolution (typically at 25–50 km grid spacing) and may not provide locally representative information of 
soil moisture which is important for regional hydrologic and agriculture applications.

�e land surface DA system CLM-PDAF consisting of the Community Land Model (CLM)24 and the Parallel 
Data Assimilation Framework (PDAF)25,26 was used to utilize the coarse resolution satellite soil moisture data to 
update the soil moisture estimates in the land surface model. �e DA structure in CLM-PDAF allows to directly 
ingest remotely sensed observations of land surface conditions to produce accurate, spatially and temporally con-
sistent �elds of land surface states, with reduced uncertainties through an ensemble based DA method. Recently, 
the European Space Agency Climate Change Initiative (ESACCI)27 provides a homogeneous and the longest time 
series of SM data to date, covering the period 1979–2018, and has been widely used for various Earth system 
research28–30 and in DA studies19,31,32. We selected ESACCI SM data for DA because of its availability at longer 
timescales, which also makes it possible to construct a long-term high-resolution SM reanalysis at continental 
scale.

Using CLM-PDAF, the daily SM data at 0.25° resolution from ESACCI were assimilated into CLM using 
an ensemble Kalman �lter (EnKF) DA method33,34 producing the �rst 3 km European SSM reanalysis (called 
ESSMRA herea�er) dataset. Figure 1 shows the schematic �ow of the CLM-PDAF setup to develop the ESSMRA 
dataset. �e purpose of ESSMRA is to provide a long-term (2000–2015) spatially and temporally consistent data 
source with high spatiotemporal resolution (3 km, daily) and high quality for the research community to use in 
hydrological and climate applications as well as to study the spatial/temporal variability of SM over Europe. �e 
relatively longer time scale and �ne spatial resolution of this new European gridded ESSMRA dataset could pro-
vide a valuable data source for many hydrological applications over larger regimes and to regional and continental 
scale studies.

�e 3 km ESSMRA was generated using three main steps: (1) the regional land surface model setup over Europe, 
(2) implementation of a DA framework, and (3) validation of ESSMRA based on observations and other reanal-
ysis products.

�e community land model (CLM), available through the 
National Centre of Atmospheric Research (NCAR) as part of the Community Climate System Model (CCSM) is 
used in this soil moisture reanalysis system. �e coupled land surface data assimilation system (CLM-PDAF) uses 
the CLM version3.5 (CLM3.5) which o�ers signi�cant improvements in estimating the components of the ter-
restrial water cycle compared to earlier versions (i.e. CLM2.0 and 3.0)24. Later versions of CLM (4.0 and 4.5) may 
be used in the future, however, a previous study showed that the di�erences between CLM3.5 and later versions 
of CLM (4.0 and 4.5) with respect to soil moisture variability remained small when compared to observations35. 
�e CLM3.5 simulates the hydrological cycle over land by taking into account interception of water by plants, 
throughfall, in�ltration, runo�, soil water and accumulation and melting of snow. In CLM3.5 the soil pro�le is 
divided into 10 soil layers (0–3.8 m). �e input soil texture information (sand fraction, clay fraction) is available 
for the surface layer only. For simplicity, sand fraction and clay fraction information for 19 soil classes in the �rst 
layer were also used for the deeper layers. �e movement of moisture between these layers is calculated using 
Richard’s equation. �e bottom soil layer is also coupled with an uncon�ned aquifer to account for groundwater 
recharge and discharge processes24. �e current setup of CLM3.5 does not consider di�erent geological condi-
tions of bedrock.

To account for land surface variability within a grid cell, a CLM grid cell consists of one or more columns 
to capture surface heterogeneity through land unit (e.g. glacier, wetland, lake, and vegetation). �e vegetated 
fraction can be further divided into 17 di�erent plant functional types (PFTs). �e water and energy balance 
equations are solved for each land cover type and aggregated back to the grid cell level. CLM requires several 
static surface input parameters related to vegetation, soils and topography36. Table 2 lists the source for each input 
parameter used in this study. �e land cover information for each PFT in our model setup was estimated based on 
the Moderate Resolution Imaging Spectro radiometer (MODIS) MCD12Q1 (version5) land cover product37. �e 

Product ERA5 MERRA2-land GLEAM-3.2a GLDAS-2.1 NCEP-CFSR

Time period 1979–present 1980–present 1980–2018 2000–2019 1979–present

Spatial resolution (km2) ~31 ~50 25 25 50

Spatial coverage Global Global Global Global Global

Temporal resolution Hourly Hourly Daily 3 hourly 3 hourly

Assimilation scheme 4D-VAR 3D-VAR Newtonian nudging EnKF 3D-VAR

Table 1. Main characteristics of commonly used long-term soil moisture global datasets from reanalysis 
products.
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1 km Global Land Surface Satellite (GLASS) LAI (leaf area index) product38 was used to estimate 12 monthly LAI 
values for every 3 km grid cell which allow spatially distributed monthly LAI values for each PFT. Additionally, 
yearly model runs were performed where the LAI information was updated at the start of each year to account for 
annual variability in LAI. Additional properties such as the stem area index and the monthly heights of each PFT 
were calculated based on the global CLM3.5 surface dataset24. Soil texture data such as sand and clay percentages 
were determined for 19 soil classes derived from the Food and Agricultural Organization (FAO) database39 and 
soil characteristics dataset developed by Miller et al.40. Topography data were acquired from the 1 km Global 
Multi-resolution Terrain Elevation Data 2010 (GMTED2010)41.

�e atmospheric forcing data such as solar radiation, temperature, pressure, near-surface wind speed, spe-
ci�c humidity and precipitation rate were prepared using the regional atmospheric reanalysis COSMO-REA6 
dataset42 from the Hans Ertel Centre for Weather Research (HErZ)43. It is based on the numerical weather pre-
diction COSMO (Consortium for Small Scale Modelling) model44 and spans the period 1995–2017 with hourly 
data of atmospheric variables at 0.055° (∼6 km) over Europe. �e COSMO-REA6 was corrected through the 

Fig. 1 Schematic of CLM-PDAF work�ow adopted to generate high resolution ESSMRA product. �e �rst step 
was to prepare an ensemble of 3 km input data for the CLM model for the EU-CORDEX domain. Second, CLM 
was initialized for each ensemble member with the equilibrium initial state variables. In the third step, selected 
ESA CCI soil moisture observations (resolution 25 km) were assimilated into CLM using the Ensemble Kalman 
�lter to generate the 3 km ESSMREA dataset.

Dataset
Spatial 
resolution (km)

Temporal 
Resolution Source model input

COSMO-REA6 6 Hourly �p://opendata.dwd.de Meteorological Inputs

MODIS (MCD12Q1) 0.5 Yearly Land Cover

GLASS LAI 1 Weekly http://glcf.umd.edu LAI

FAO Soil 10 NA http://www.fao.org Soil Texture

GMTED2010 1 NA https://www.usgs.gov/ DEM

Table 2. Model input datasets used to generate ESSMRA.
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assimilation of observational meteorological data using the existing nudging scheme in COSMO model with 
boundary conditions from ERA-Interim data. A more comprehensive description of the dataset is available in 
previous studies42,45.

�e SM satellite observations from the combined ESACCI dataset at 0.25° resolution were used for the DA 
experiment, as described in the next section. In the past decade, a number of di�erent satellite missions have been 
launched to provide SM retrievals with high temporal resolution over large regions. Examples are Soil Moisture 
and Ocean Salinity46,47 (SMOS; launched in 2009) and the Soil Moisture Active Passive (SMAP, launched in 2015) 
missions48. �e complete list of operational remotely sensed surface SM products is also given in Babaeian et al.8. 
�ese recent data products are only available for the last decade and cannot be used to apply soil moisture infor-
mation in a land surface reanalysis for extended time periods. �e combined ESACCI product which combines 
both active and passive microwave sensors provides large spatiotemporal coverage and o�ers a good opportunity 
to improve LSM estimates with DA techniques. In this merged product, the absolute soil moisture values are res-
caled to common climatology using soil moisture estimates from GLDAS-Noah model through CDF-matching 
method. �e quality of the ESACCI SM product has been evaluated on a global scale by several studies28. By 
comparing the ESACCI SM dataset with in-situ measurements, a previous study found that the product was able 
to capture the annual cycle of SM and its short-term variability29. �e quality of the product has been shown to 
increase with time due to the addition of new satellites and methods used to merge them28.

For the generation of the ESSMRA dataset, we used 
the CLM–PDAF framework, in which PDAF is coupled with CLM for soil moisture assimilation. �e ESSMRA 
product was generated by performing three main steps as shown in Fig. 1. First, CLM3.5 was implemented for 
the EURO-CORDEX domain with a spatial resolution of 0.0275° (3 km), inscribed into the o�cial EUR11 grid. 
�e model was driven with COSMO-REA6 reanalysis dataset for the time period 2000–2015. To match the spa-
tial resolution of CLM3.5 setup, the COSMO-REA6 dataset at 6 km resolution was re-gridded to 0.0275° (3 km) 
using the �rst-order conservative interpolation method49. In the second step, a 30 years spin-up run (simulating 
time period of 2000–2006 �ve times) of CLM forced by atmospheric �elds was carried out to obtain equilibrium 
initial state variables which were used to initialize the model. In the third step, the model was run for 2000–2015 
at hourly time step with the assimilation of ESACCI soil moisture data into the model once a day using the EnKF 
algorithm. �e EnKF algorithm uses ensembles of model simulations to approximate the model state and param-
eter error covariance matrix in order to optimally merge model predictions with observations3,50–52. �e PDAF is 
designed for high-performance computing infrastructures and can e�ciently cope with the high computational 
burden of ensemble-based DA25,26. Because of this feature, it was possible to produce a pan-European longer-term 
and high spatial resolution land surface DA product. To generate ensembles of forecast states, we perturbed the 
precipitation and the soil parameters (sand and clay percentage) by applying log normally distributed multiplica-
tive perturbations (with a mean of 1 and standard deviation of 0.15) to the precipitation �eld and random noise 
drawn from spatially uniform distribution (±10%) to the sand and clay content, respectively. In the present study, 
we only updated the soil moisture state variable and kept the soil texture constant for individual ensemble mem-
bers throughout our simulations instead of joint state and parameter updates of soil moisture and soil texture in 
the DA approach as used in our previous study31. �e ensemble size was set to 20 in our assimilation experiment 
using similar methodology as used in Naz et al.31. Our initial study found slightly improved SM estimates when 
ensemble size was increased from 12 to 2031. However, increasing ensemble size is quite challenging for such a 
large-scale high-resolution model because of the memory and storage requirements. In the DA approach, another 
challenge is the spatial mismatch between coarse-resolution satellite data and high-resolution hydrologic models. 
To address the resolution mismatch between the ESACCI data and model (i.e. 0.25° and 0.0275°, respectively), 
the ESACCI grid cell nearest to the model grid cell was identi�ed and considered as an independent data point for 
DA. While this approach avoids the additional step of downscaling the satellite data to model resolution, it may 
smooth out the high-resolution features of the LSM. In future multiscale assimilation (i.e. to update various model 
grid cells covered by a satellite observation) of the ESACCI SM data into CLM could be explored53. Another lim-
itation associated with our method is that due to the large number of grid cells (1544 × 1590) and required com-
putational resources, it was not possible to assimilate all of the data available from the ESACCI satellite data into 
CLM. In the current framework, we randomly selected 1000 grid cells (5% of total grid cells over land). �e SM 
observations at the selected grid cells were then assimilated into the CLM model. �e non-assimilated data were 
used in the model validation step. �is approach allowed us to evaluate the impact of DA at other locations where 
the data were not assimilated. However, it should be noted that this approach might negatively a�ect the SM 
estimates that are further apart from the assimilated grid cells because of the use of global EnKF in our approach. 
In the future, the local ensemble transform Kalman �lter (LETKF) could be used to avoid this limitation. �e 
strength and limitations associated with our methods are also discussed in detail in Naz et al.31.

Using the above setup, DA experiments were conducted using CLM-PDAF over Europe (Fig. 2). We selected 
2000–2015 as our period of analysis because of the availability of most model input data in our experiment for 
this time period. �is experiment allowed us to generate a 16-year high resolution ESSMRA dataset at daily time 
scale. A second experiment was also performed to evaluate the impact of DA using the same model setup, but 
without assimilating the ESACCI observations into the model. We referred to these experiments as “CLM-DA” 
(data assimilation) and “CLM-OL” (open loop simulation), respectively.

�e in-situ soil moisture data from 11 networks across Europe 
were acquired from the International Soil Moisture Network (ISMN)54, which provides globally available soil 
moisture measurements. �e surface soil moisture data from 112 stations for the top 5 to 10 cm surface layer were 
collected to evaluate the ESSMRA product in the top two CLM soil layers (about 3 cm). In-situ data were collected 
for 2000–2015, but their availability does not necessarily cover the whole period. For comparison with ESSMRA 
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daily estimates, the measurements with hourly time scale were aggregated to daily time scale. If more stations are 
located within one 3 km grid cell, the average of those stations was used for comparison. �e characteristics of the 
selected in-situ networks are presented in Table 3.

�e ESSMRA data were also compared with other global soil moisture reanalysis products from the European 
Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5)17, Global Land Data Assimilation System 
(GLDAS)15 and Global Land Evaporation Amsterdam Model (GLEAMv3.2a)18 available at 0.25° resolution and 
hourly temporal resolution. �e aim is to understand the spatiotemporal patterns of ESSMRA relative to other 
existing reanalysis products and how ESSMRA di�ers from other SM reanalysis products at regional scale. �e 
SM from these reanalysis datasets have been widely used by many studies18,55–62. For instance, a comparison of 
GLDAS and ERA5 SM with in-situ data in Europe showed good agreement in terms of temporal dynamics of SM 
data62. Similarly, the SM estimates from GLEAM (v3) compared well with in-situ surface SM and was further 
improved than its previous versions with assimilation of surface soil moisture observations into the GLEAM18.

Fig. 2 Map of EURO-CORDEX domain (1544 × 1592 grid cells) showing surface elevation, boundaries of 
PRUDENCE regions and locations of International Soil Moisture Network (ISMN) stations used for data 
validation. Black boxes correspond to PRUDENCE regions with abbreviated letters in red colour indicating 
names of the regions (FR: France, ME: Mid-Europe, SC: Scandinavia, EA: Eastern Europe, MD: Mediterranean, 
IP: Iberian Peninsula, BI: the British Isles, AL: Alpine region. �e solid dots represent locations of the in-situ 
ISMN soil moisture stations.

Network Country # of Stations Soil depth (m) Start date End date

COSOMO Austria 1 0.0–0.1 2010-12-13 2015-12-31

FMI Finland 1 0.0–0.05 2011-09-18 2015-12-31

HOBE Denmark 23 0.0–0.05 2009-09-08 2015-01-01

MOL-RAO Germany 1 0.0–0.08 2003-01-01 2014-01-01

ORACLE France 3 0.0–0.05 2000-01-07 2013-09-09

REMEDHUS Spain 24 0.0–0.05 2005-03-15 2015-12-31

RSMN Romania 20 0.0–0.05 2014-04-09 2015-12-31

SMOSMANIA France 21 0.0–0.05 2007-01-01 2015-12-31

TERENO Germany 5 0.0–0.05 2009-12-31 2015-12-31

UMBRIA Italy 13 0.0–0.05 2002-10-09 2015-12-31

VAS Spain 2 0.0–0.05 2010-01-10 2012-01-01

Table 3. Information of selected in-situ soil moisture stations used in the study.



6SCIENTIFIC DATA |           (2020) 7:111  | 

www.nature.com/scientificdatawww.nature.com/scientificdata/

�e ESSMRA dataset in NetCDF format is freely available for download from PANGAEA data repository63 as well 
as at the Jülich Supercomputing Centre data repository64. �e dataset consists of ensemble mean of daily surface 
soil moisture for the period of 2000–2015 and is available at a monthly temporal frequency using the following 
naming convention as:

EU_ESSMRA_daily_ensmean_CLM–PDAF_3Km_v1.yyyymm.nc.

�e netcdf �les contain the variable “H2OSOIL” which is the volumetric soil moisture at the 0–3 cm layer 
[m3m−3]. For example the �le, EU_ESSMRA_daily_ensmean_CLM–PDAF_3Km_v1.200101.nc contains the 
daily soil moisture values for the month of January 2001. Each �le also contains the de�nition of the geographical 
coordinate system of the grid (latitudes, longitudes and rotated pole).

�e newly developed ESSMRA dataset was validated at di�erent spatiotemporal scales in four steps. First, the 
ESSMRA datset was validated using independent stations data. Second, the performance of ESSMRA was eval-
uated at regional scale with respect to ESACCI data to assess the impact of DA at other locations where the data 
were not assimilated. �ird, the ability of ESSMRA to capture the monthly and yearly climatologies for di�erent 
regions in Europe was evaluated against existing global reanalysis products (ERA5, GLDAS and GLEAM). Finally, 
ESSMRA was compared with ERA5, GLDAS and GLEAM reanalysis products to understand the spatial variabil-
ity of SM at the European scale.

For evaluation against in-situ station measurements and other commonly used SM products we used the 
Pearson correlation coe�cient (R), root mean square error (RMSE), unbiased root-mean-square error (ubRMSE) 
and a metric α proposed by Duveiller et al.65 which represents additive/multiplicative bias between two data-
sets. For α, 0 represents full bias and 1 indicates no bias. For this validation, we extracted the ESSMRA data to 
the nearest location of the station. However, if more stations are located within one 3 km grid cell, we used the 
average of those stations. For regional analysis, the results were presented for eight prede�ned analysis regions 
from the “Prediction of Regional scenarios and Uncertainties for De�ning European Climate change risks and 
Effects” (PRUDENCE) project66 (FR: France, ME: Mid-Europe, SC: Scandinavia, EA: eastern Europe, MD: 
Mediterranean, IP: Iberian Peninsula, BI: British Isles, AL: Alpine region) as shown in Fig. 2. We referred to these 
regions as the “PRUDENCE” regions.

For ESSMRA validation, the average of simulated SM in the top two layers (i.e., at 0.007 and 0.03 m depth) of 
CLM was used. Because of high computational cost and storage requirement associated with implementing the 
continental scale 3 km integrated hydrologic and DA framework, currently, we only analysed the top 3 cm soil 
moisture, which is the limitation of this study. However, prior study67 showed no major di�erences for latent heat 
�ux estimation using information content of surface SM or enhanced with soil moisture in deeper layers. With 
advancing capabilities in computing and storage, ESSMRA dataset can be extended to root zone data analysis 
using CLM-PDAF in the future.

in-situ �e surface SM from CLM-DA and 
CLM-OL experiments were validated against in-situ measurements and also compared with the ESACCI satellite 
merged product (shown in Fig. 3). �e surface SM observations were obtained from the ISMN database using all 
the data available over Europe between 2000 and 2015 (Table 3) and were used for the independent validation. 
�e Pearson correlation coe�cient (R) and α for each product were calculated at the in-situ station locations. 

Fig. 3 Scatter plot of R and α of surface SM from CLM-DA, CLM-OL and ESACCI against in-situ observations 
used in this study. Horizontal and vertical lines divide the graph into four quadrants based on thresholds of 
R and α. �e total number of stations falling into each category is labelled in each quadrant of the graph. �e 
stations are color-coded by soil moisture network.
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�ese statistics were computed taking all station measurements into account for the period 2000–2015. Figure 3 
shows the scatter plot of these scores against in-situ data for CLM-DA, CLM-OL and ESACCI.

Using a threshold of 0.5 for both R and α, stations fell into four categories, (1) stations with higher agreement 
(i.e. both R and α are greater than 0.5), (2) stations with higher R value but lower α values (i.e. there is higher 
di�erence in magnitude but temporal dynamics match well), (3) stations with higher values of α and low R val-
ues, and (4) stations with both low values of R and α. �e thresholds for both R and α are based on the general 
rule of thumb that R > 0.5 represent moderate to high correlation. �e performance of CLM-DA experiments in 
comparison to CLM-OL experiment and EASCCI data was evaluated in each of these four categories for bias and 
correlation. Based on these thresholds, Fig. 3 shows that SM from CLM-DA is in good agreement with observa-
tions over half of the stations (i.e. 51 out of 112 fell into category 1) for both R and α having values greater than 
0.5 whereas CLM-OL and ESACCI shows higher agreement with observation for 38 and 48 stations, respectively. 
Overall CLM-DA performs well in matching the magnitude (i.e. α values > 0.5) over 58% of stations and higher 
correlation values for 70% of the stations, while ESACCI shows α values greater than 0.5 for 53% of the stations 
but exhibits higher correlation values (i.e. >0.5) for 80% of the stations. CLM-DA did a poor job for 17% of the 
stations where both magnitude and temporal dynamics are not matching well with observations (i.e. α and R 
values < 0.5). �ese locations were mostly for the in-situ stations of RSMN and HOBE networks, where ESSMRA 
SM is overestimated with respect to the stations data. �is overestimation is also reported in other studies68,69 as 
well based on the comparison with satellite-based SM products.

Table 4 shows statistical scores for ESSMRA at all in-situ locations across all networks. On average, correla-
tions ranged from 0.01 to 0.70 while α values ranged from 0.08 to 0.94. �e average ubRMSE and RMSE values 
ranged from 0.04 to 0.06 m3m−3 and 0.05 to 0.12 m3m−3, respectively. A potential cause for lower correlation 
values of ESSMRA for some of the networks such as FMI, HOBE (located in Scandinavian region) and COSMOS 
(located in Alpine region) might be related to the limitations and uncertainties of ESACCI retrieval algorithm 
which is sensitive to vegetation, frozen soil and complex topography27. �e SM in these areas is also in�uenced by 
soil freezing and thawing processes, dense forest, soil organic matter and the presence of numerous water bodies 
and bogs69,70. �ese processes are not well represented in the land surface models.

�ere are also some caveats regarding the use of in-situ observations for validation of model estimates. First, 
because of the di�erences in the spatial representativeness between di�erent products, it is complicated to eval-
uate the coarser resolution product against point measurements i.e. the local measurement may not properly 
represent the large-scale average. For example at the point scale point, measurements cover ~1 dm3, while the 
model has a grid resolution of approximately 3 km. Second, CLM near-surface soil moisture variable represents 
an average over the top 5 cm of soil, whereas the in-situ measurements do not represent such a depth average, 
the surface soil moisture measurements instead represent conditions at a depth of about 5 cm. �e spatial repre-
sentativeness error and the vertical mismatch between the in-situ measurements and the modeled soil moisture 
variable will in�uence the skill metrics we computed for the validation.

Despite these issues, ESSMRA product shows overall good agreement with in-situ observations at daily time 
scale as shown in Fig. 4. Because of the issues stated above with spatial representativeness, the average of the 
in-situ observations of all stations was compared with the averaged soil moisture of all grids within each ISMN 
listed network. �is comparison shows that at daily scale the model is able to reproduce the daily variations in soil 
moisture fairly well, except for the RSMN network. �e overestimation of ESSMRA SM data over RSMN is in line 
with �ndings by previous studies68,69.

�e ESACCI SM data, which were excluded from the DA 
procedure, were used to evaluate the impact of assimilating soil water content (m3m−3; SWC) on model estimated 
SM at regional scale. We calculated the skill score (SS) of RMSE, ubRMSE, R and α for SWC using following 
equations:

Networks

R alpha RMSE ubRMSE

min average max min average max min average max min average max

REMEDHUS
(24)

0.29 0.63 0.84 0.07 0.50 0.97 0.05 0.12 0.19 0.04 0.06 0.15

HOBE(23) −0.01 0.31 0.69 0.11 0.56 0.93 0.05 0.09 0.23 0.04 0.06 0.12

SMOSMANIA
(21)

0.40 0.70 0.79 0.28 0.67 1.00 0.04 0.09 0.17 0.04 0.06 0.09

RSMN(20) 0.01 0.49 0.88 0.09 0.34 0.95 0.06 0.12 0.18 0.04 0.06 0.08

UMBRIA(13) 0.63 0.75 0.82 0.40 0.74 1.00 0.04 0.09 0.16 0.04 0.07 0.12

TERENO(5) 0.57 0.67 0.79 0.42 0.68 0.77 0.06 0.07 0.09 0.05 0.06 0.07

ORACLE(3) 0.55 0.61 0.71 0.51 0.55 0.62 0.10 0.11 0.12 0.06 0.08 0.09

VAS(2) 0.41 0.63 0.84 0.90 0.94 0.98 0.05 0.06 0.07 0.04 0.05 0.07

COSMOS (1) NA 0.09 NA NA 0.35 NA NA 0.12 NA NA 0.08 NA

FMI (1) NA 0.01 NA NA 0.08 NA NA 0.16 NA NA 0.05 NA

MOL-RAO(1) NA 0.70 NA NA 0.64 NA NA 0.08 NA NA 0.05 NA

Table 4. Statistical scores for the comparison between ESSMRA and in-situ SM for all 112 stations available 
during 2000–2015.
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Positive SS values in Eq. (1) to Eq. (4) indicate improvement as a result of DA relative to the open loop, while 
SS < 0 indicates a degradation in assimilation results.

�e impact of data assimilation on CLM-DA model performance is illustrated in Fig. 5 on the basis of skill 
scores for RMSE, ubRMSE, R and α for spatially averaged SWC over the PRUDENCE regions. For CLM-DA, 
assimilation of ESACCI observation shows positive SSubRMSE (i.e. reduced RMSE against CLM-OL) over all 
PRUDENCE regions with significant improvement over FR region and least improvement over SC region 
(Fig. 5a). However, assimilation of ESACCI had little impact on the model performance to capture the observed 
temporal variations in SWC as indicated by small positive values of SSubRMSE (ranges from 0.1 to 0.2) over regions 
FR, ME, AL and EA and negative values over BI, IP and MD regions (i.e. −0.02, −0.05 and −0.08, respec-
tively; Fig. 5b). Figure 5c shows that assimilating ESACCI overall give little improvement in terms of correlation 
(SSR > 0.02) with slightly degraded correlation over the BI region (−0.01). However, most regions show signi�-
cant improvements in terms of reducing biases in SWC as indicated by positive SSα values (>0.12) (Fig. 5d). �e 
smaller improvements in R are likely due to the fact that temporal dynamics of CLM estimated SM are captured 
well in the CLM-OL, in which case there is little bene�t from assimilation.

To further explore the quality of ESSMRA, we eval-
uated the skill of ESSMRA over PRUDENCE regions in comparison with commonly used SM reanalysis prod-
ucts as shown in Fig. 6. For this analysis, R and α were computed using spatially-averaged soil moisture over 

Fig. 4 Comparison of daily time series of soil water content (m3/m3) from CLM-DA and in-situ observations 
from the ISMN networks. �e average of the in-situ observations of all stations within the ISMN network was 
�rst calculated and then compared with the averaged soil moisture of all grids within the same ISMN network.
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PRUDENCE regions between ESSMRA (CLM-DA) and other products (GLDAS, GLEAM and ERA5, ESACCI). 
�is analysis shows that overall ESSMRA has higher correlation (i.e. R > 0.7) with other reanalysis products, 
which indicates higher agreement of ESMRA with other products in terms of timing and relative magnitude in 
time series. For the bias results, overall ESSMRA has higher agreement with ERA5 (α > 0.8), followed by GLDAS 
(α > 0.71), while it has lower agreement with GLEAM (α < 0.5) over most regions. Higher agreement with the 
ESACCI (α > 0.90) than the CLM-OL, again, shows the positive impact of DA through correcting of errors in the 
timing and magnitude of the soil moisture.

In addition, ESSMRA’s ability to capture the monthly and yearly climatologies over PRUDENCE regions is 
also evaluated for the period 2000–2015 against existing reanalysis products as shown in Supplementry Figs. S1 
and S2. �ese results suggest that ESSMRA follows the seasonal variations fairly well, indicating that the timing 
and magnitude of SM at monthly and annual scales is reasonably accurate. As shown in Supplementry Fig. S1, 
however, in the dryer regions such as IP and MD, the soil moisture estimates by ESSMRA are lower than the other 
products particularly in summer. �is might be due to the fact that satellite soil moisture tends to underestimate 
the true soil moisutue content in dry conditions due to systematic retrieval errors71 which may also a�ect the 

Fig. 5 Performance evaluation of CLM-OL and CLM-DA against ESACCI SM. �e skill score of (a) SSRMSE,  
(b) SSubRMSE, (c) SSR and (d) SSα were calculated using spatially averaged SWC over each PRUDENCE region for 
years 2000–2015 from CLM-OL and CLM-DA simulations.

Fig. 6 Performance evaluation of CLM-DA (ESSMRA) against GLDAS, GLEAM, ERA5, ESACCI and CLM-OL 
over PRUDENCE regions. Skill scores of (a) R and (b) Duveiller bias(α) were calculated using spatially averaged 
soil water content for years 2000–2015 over each PRUDENCE regions.
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accuracy of assimilated SM estimation. On the other hand, the dry bias could be related to the di�erent spatial 
scales and soil layers depths between the products. For example, in GLDAS the near-surface soil moisture vari-
able represents an average over the top 10 cm of soil, whereas ERA5 and GLEAM estimate surface soil moisture 
over the 5 cm of soil depth. Moreover, small di�erences between SM estimates from these datasets might also be 
related to missmatch between input datasets, model parameterizations and assumptions used by di�erent LSMs 
for generation of these products. Nevertheless, above results suggest overall a good agreement at daily, monthly 
and annual scale with SM renalysis products, which increases con�dence in ESSMRA SM estimates.

To assess the ability of ESSMRA to capture short term soil moisture variability 
in comparison to other reanalysis products, seasonal and annual standardized anomalies (SMA) were calculated 
as follows:

SMA
SM SM

SM (5)

t
=

−

σ

where SMt is the average soil moisture value for a current year, SM is long-term average and 
σ

SM  is the standard 
deviation, which are both calculated for the same period of 2000–2015.

Figure 7 illustrates the spatial distribution of SSM anomalies from the ESACCI satellite merged product, 
GLDAS, GLEAM, ERA5 and ESSMRA developed in this study along with CLM-OL. Summer anomalies of SM 
for a dry year (2003), wet year (2007) and average year (2011) were calculated using average SM values over June, 
July and August (JJA) relative to the mean JJA SM for the 2000–2015 period. �e dry, wet and average years were 
selected by comparing yearly precipitation amounts to the long term average precipitation of 2000–2015 over 
Europe. �e spatial distribution shows similar patterns of positive and negative SM anomalies over Europe across 
all datasets for dry, wet and average years. For the dry year 2003 (a record heat wave over Europe), CLM-DA 
shows a similar area extent of negative anomalies as the ESACCI dataset and ERA5, whereas CLM-OL, GLDAS 
and GLEAM exhibit much stronger negative anomalies over central Europe. �e SM anomaly from CLM-DA for 
the wet and average years (2007, 2011) shows a good match with ESACCI and other reanalysis datasets except 
GLDAS which shows much stronger wet and dry anomalies than others.

At the annual scale, the time series of soil moisture anomalies over the PRUDENCE regions for 2000–2015 
(Fig. 8) shows that SM anomalies from CLM-DA could capture the temporal SM variability and agrees well with 
SM anomalies from ESACCI, GLDAS, GLEAM and ERA5 across all regions. However, the agreement between 
di�erent products was higher for the average years than for the dry and wet years.

Fig. 7 Spatial distribution of the standardized summer (JJA) soil moisture anomaly for dry, wet and average 
years. �e soil moisture anomalies were calculated for year 2003 (dry year), 2007 (wet year) and 2011 (average 
year) and compared across existing data and reanalysis products of (a) satellite (ESACCI), (b) CLM-OL (c) 
CLM-DA, (d) ERA5, (e) GLDAS and (f) GLEAM.



1 1SCIENTIFIC DATA |           (2020) 7:111  | 

www.nature.com/scientificdatawww.nature.com/scientificdata/

�e soil moisture dataset at high spatiotemporal resolution could be used for many practical applications. For 
example, it can be used as an initial input data for climate change analysis and for numerical weather prediction 
models to improve the model forecast in terms of location and amount of extreme precipitation events. Because of 
the scarcity of the in-situ soil moisture observations over large areas, this dataset can also be used for validation of 
SM outputs in modelling studies. �is dataset will also be useful to understand the development and persistence 
of extreme weather events such as droughts, �oods and heatwaves.

However, the ESSMRA dataset may still include some uncertainties. For example, uncertainties in ESSMRA 
may exist in regions where satellite soil moisture retrievals are sparse due to topography, standing water, dense 
vegetation, frozen soil and/or snow-covered areas. Apart from data gaps, ESACCI is a merged product and may 
contain inconsistencies because of di�erences in sensor characteristics and soil moisture retrieval algorithms29. 
�ese inconsistencies may also induce uncertainties in the ESSMRA data, particularly in some regions such as 
over Northern Europe or in Alpine regions and need to be improved in the future.

�e CLM-PDAF setup is available through the Terrestrial System Modelling Platform (TSMP). TSMP is provided 
through a git repository available at the model’s website (https://www.terrsysmp.org/). �e users are required to 
register to the git repository to get access to the code, pre- and post-processing tools and documentations for 
installing the code with examples setups. TSMP is released without the component models. For the coupled 
CLM-PDAF con�guration, the code for PDAF library is available through website (pdaf.awi.de) which also 
provide links to the documentation and the source code. �e CLM (version 3.5), as used in this study, is available 
as an open source model through the o�cial CLM website (http://www.cgd.ucar.edu/tss/clm/distribution/clm3.5/
index.html) which o�ers all links to documentation, source code, and input data for the stand-alone version 
release of CLM.

Received: 14 October 2019; Accepted: 12 March 2020;

Published: xx xx xxxx

Fig. 8 �e standardized annual soil moisture anomalies from ESACCI, CLM-OL, CLM-DA, ERA5, GLDAS 
and GLEAM over the PRUDENCE regions. �e standardized annual soil moisture anomalies were calculated 
using spatially averaged soil water content for years 2000–2015 over each PRUDENCE region.
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