001     874551
005     20220930130232.0
024 7 _ |a 10.3389/fmicb.2020.00382
|2 doi
024 7 _ |a 2128/25058
|2 Handle
024 7 _ |a altmetric:77732369
|2 altmetric
024 7 _ |a pmid:32256468
|2 pmid
024 7 _ |a WOS:000525716600001
|2 WOS
037 _ _ |a FZJ-2020-01505
041 _ _ |a English
082 _ _ |a 570
100 1 _ |0 P:(DE-Juel1)176879
|a Li, Wing-Jin
|b 0
245 _ _ |a Unraveling 1,4-Butanediol Metabolism in Pseudomonas putida KT2440
260 _ _ |a Lausanne
|b Frontiers Media
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1592229899_31297
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a Biotechnologie 1
520 _ _ |a Plastics, in all forms, are a ubiquitous cornerstone of modern civilization. Although humanity undoubtedly benefits from the versatility and durability of plastics, they also cause a tremendous burden for the environment. Bio-upcycling is a promising approach to reduce this burden, especially for polymers that are currently not amenable to mechanical recycling. Wildtype P. putida KT2440 is able to grow on 1,4-butanediol as sole carbon source, but only very slowly. Adaptive laboratory evolution (ALE) led to the isolation of several strains with significantly enhanced growth rate and yield. Genome re-sequencing and proteomic analysis were applied to characterize the genomic and metabolic basis of efficient 1,4-butanediol metabolism. Initially, 1,4-butanediol is oxidized to 4-hydroxybutyrate, in which the highly expressed dehydrogenase enzymes encoded within the PP_2674-2680 ped gene cluster play an essential role. The resulting 4-hydroxybutyrate can be metabolized through three possible pathways: (i) oxidation to succinate, (ii) CoA activation and subsequent oxidation to succinyl-CoA, and (iii) beta oxidation to glycolyl-CoA and acetyl-CoA. The evolved strains were both mutated in a transcriptional regulator (PP_2046) of an operon encoding both beta-oxidation related genes and an alcohol dehydrogenase. When either the regulator or the alcohol dehydrogenase is deleted, no 1,4-butanediol uptake or growth could be detected. Using a reverse engineering approach, PP_2046 was replaced by a synthetic promotor (14g) to overexpress the downstream operon (PP_2047-2051), thereby enhancing growth on 1,4-butanediol. This work provides a deeper understanding of microbial 1,4-butanediol metabolism in P. putida, which is also expandable to other aliphatic alpha-omega diols. It enables the more efficient metabolism of these diols, thereby enabling biotechnological valorization of plastic monomers in a bio-upcycling approach.
536 _ _ |0 G:(DE-HGF)POF3-581
|a 581 - Biotechnology (POF3-581)
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Narancic, Tanja
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Kenny, Shane T.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Niehoff, Paul-Joachim
|b 3
700 1 _ |0 P:(DE-HGF)0
|a O’Connor, Kevin
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Blank, Lars M.
|b 5
700 1 _ |0 P:(DE-Juel1)176653
|a Wierckx, Nick
|b 6
|e Corresponding author
|u fzj
773 _ _ |0 PERI:(DE-600)2587354-4
|a 10.3389/fmicb.2020.00382
|g Vol. 11, p. 382
|p 382
|t Frontiers in microbiology
|v 11
|x 1664-302X
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/874551/files/2019-0231476-4.pdf
856 4 _ |u https://juser.fz-juelich.de/record/874551/files/2019-0231476-4.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/874551/files/Li%202020%20butanediol%20authorcopy_supp.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/874551/files/fmicb-11-00382.pdf
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://juser.fz-juelich.de/record/874551/files/Li%202020%20butanediol%20authorcopy_supp.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/874551/files/fmicb-11-00382.pdf?subformat=pdfa
|x pdfa
|y Restricted
|z StatID:(DE-HGF)0599
909 C O |o oai:juser.fz-juelich.de:874551
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)176653
|a Forschungszentrum Jülich
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-581
|1 G:(DE-HGF)POF3-580
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b FRONT MICROBIOL : 2017
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21