001     874553
005     20210130004725.0
024 7 _ |a 2128/24572
|2 Handle
037 _ _ |a FZJ-2020-01507
041 _ _ |a English
100 1 _ |a Bode, Mathis
|0 P:(DE-HGF)0
|b 0
111 2 _ |a NIC Symposium 2020
|c Jülich
|d 2020-02-27 - 2020-02-28
|w Germany
245 _ _ |a Sub-Grid Scale Modelling at Scale with Deep Learning and up to 60 Billion Degrees of Freedom
260 _ _ |a Jülich
|c 2020
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
295 1 0 |a NIC Symposium 2020
300 _ _ |a 379 - 388
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1584451491_22058
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Publication Series of the John von Neumann Institute for Computing (NIC) NIC Series
|v 50
520 _ _ |a This work presents fully resolved direct numerical simulations (DNSs) of a turbulent reactive planar temporally non-premixed jet configuration with up to 60 billion degrees of freedom. As scalar mixing is of utmost importance for this kind of configuration, a novel deep learning (DL) approach in the context of large-eddy simulation is presented which results in predictive mixing statistics on underresolved grids. The usability of the mixing model is approved by applying it to the DNS data. Furthermore, node performance measurements for the training of the DL networks are shown for different computing clusters.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
700 1 _ |a Denker, Dominik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jitsev, Jenia
|0 P:(DE-Juel1)158080
|b 2
|e Corresponding author
700 1 _ |a Pitsch, Heinz
|0 P:(DE-HGF)0
|b 3
787 0 _ |i IsPartOf
|0 FZJ-2020-01353
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874553/files/NIC_2020_Pitsch.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874553/files/NIC_2020_Pitsch.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874553
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)158080
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21