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This work presents fully resolved direct numerical simulations (DNSs) of a turbulent reactive
planar temporally non-premixed jet configuration with up to 60 billion degrees of freedom. As
scalar mixing is of utmost importance for this kind of configuration, a novel deep learning (DL)
approach in the context of large-eddy simulation is presented which results in predictive mixing
statistics on underresolved grids. The usability of the mixing model is approved by applying
it to the DNS data. Furthermore, node performance measurements for the training of the DL
networks are shown for different computing clusters.

1 Introduction

Turbulent fluid flows pose some of the most difficult and fundamental problems in clas-
sical physics as turbulence is a complex, strongly non-linear, multi-scale phenomenon.1

Consequently, the prediction of the statistics of fluctuating velocity and scalar fields and
the development of models for a precise statistical prediction of these fields even in scale-
resolved simulations is one of the main challenges in turbulence research.2, 3 An important
example is the prediction of scalar mixing in turbulent flows as it controls many processes
of industrial relevance.

One often used modelling approach for turbulent flows is large-eddy simulation (LES).
LES solves for the larger, flow-dependent scales of the flow and models all scales be-
low a particular filter width.4, 5 By assuming that the smaller, unresolved scales reveal
certain universal features and decouple from the larger non-universal scales, models for
LES can be built from relatively simple, semi-empirical algebraic relations. A systematic
approach for developing such models is to perform fully resolved direct numerical simula-
tions (DNSs), filter the resulting data with a given filter kernel, and find relations between
the filtered data and the original DNS results. The objective of the present work is to de-
velop a LES model for scalar mixing in turbulent flows based on deep learning (DL). This
data-driven approach reconstructs the subfilter statistics, which can be used to close the
filtered Navier-Stokes equations.

DL is one of the most emerging research topics in the age of big data. Examples of DL
applications include image processing,6–9 voice recognition,10 or website customisation.11

One reason for this is the continued growth of computational power (especially GPUs).
Another reason is the availability of exceptionally large labelled experimental datasets.
Data-driven methods and DL have also become more popular over the last years in the
field of fluid mechanics including turbulence research.12–15 However, simple networks or
small and artificial datasets have often limited these studies in the past.
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The remainder of this article is organised as follows. Sec. 2 describes the used reactive
datasets. In Sec. 3, details about the data-driven reconstruction methodology are given, and
results for inert data are discussed. The scalar mixing LES model is applied to the reactive
data in Sec. 4. The paper finishes with conclusions.

2 Reactive DNS

Combustion in turbulent flows can be classified in several regimes based on the level of
interaction of the turbulent flow field and the combustion chemistry. These combustion
regimes have severe implications to the choice of adequate combustion models employed
in the simulation of real world engineering applications. However, in the limit of intense
scale interaction between turbulence and flame scales, no satisfactory combustion model
exists. In this combustion regime, the well defined and understood flame structure is dis-
integrated by turbulent eddies. Unfortunately, the lack of suitable combustion models in
this regime limits the quality of the prediction of LESs of novel and promising combus-
tion processes, which rely on low temperatures and consequently feature slow combustion
time scales. As both turbulence and chemistry scales must be fully resolved for an appro-
priate investigation of these combustion conditions, the conduction of high fidelity direct
numerical simulations (DNS) is inevitable. To this end, a series of five DNSs of planar
temporally evolving non-premixed jet flames was performed on the supercomputers JU-
RECA, JUQUEEN, and JUWELS. The DNSs feature methane as fuel and air as oxidiser.
Different levels of dilution of the fuel, as well as increasing turbulence intensities, allow
for a precise determination of combustion regime boundaries. The configurations of the
DNSs, as well as important non-dimensional numbers are summarised in Tab. 1. As sim-
ulating real world engineering configurations is currently impossible due to the immense
computational resource requirements, the idealised configuration of the planar temporally
evolving jet was chosen for maximising the flame surface as well as for the ease of obtain-
ing statistics. In this configuration, the fuel stream is situated in stream-wise centre slab
of the domain and the oxidiser is moving in the opposing direction at the upper and lower
part of the domain. Two highly turbulent flame fronts form in the shear layers between the
fuel and oxidiser streams.

Low Re Low Re Intermediate High Da High Re
low dilution high dilution Re case case case

case case
Rejet,0 4500 4500 6000 6000 10 000
Daτ 0.125 0.150 0.150 0.450 0.150
Zst 0.20 0.45 0.45 0.45 0.45

ngridpoints [109] 0.4 0.3 0.6 1.6 1.2
DOF [109] 15 11 23 60 45

Table 1. Important non-dimensional numbers and numerical parameters of the DNSs of planar temporally evolv-
ing non-premixed jet flames conducted on the supercomputers JUQUEEN, JURECA, and JUWELS. The initial
jet Reynolds number Rejet,0 indicates the ratio of the largest to the smallest turbulent length scales, the Damköler
number Daτ indicates the inverse level of flame extinction and the stoichiometric mixture fraction Zst reflects
the level of the dilution of the fuel stream. DOF indicates the degrees of freedom of the system of equations
solved in each time step.
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Figure 1. Left: PDF of the mixture fraction P (Z) in the centre slab of the high Re case for three different time
steps (solid line: early time step, dashed line: intermediate time step, dashed-dotted line: last time step). Right:
temporal evolution of the normalised flame surface area Ast/Ast,0 (red line: Low dilution case, yellow line:
intermediate Re case, blue line: high Re case).

As fuel and oxidiser are initially separated and a combustable mixture must be formed
prior to combustion, applications using non-premixed combustion rely heavily on turbulent
mixing to achieve high efficiencies. Therefore, knowledge of the turbulent mixing process
is of upmost importance for the reliable modelling of non-premixed combustion. The
turbulent mixing process is illustrated by the example of the probability density function
(PDF) of the mixture fraction P (Z) in the centre slab of the domain of the High Re case in
Fig. 1 (left). In the early time step, P (Z) resembles a double-δ PDF with peaks at Z = 0
(pure oxidiser) and Z = 1 (pure fuel), which highlights the initial separation of the two
streams. In later time steps, the PDF changes shape as turbulent transport continuously
causes fuel and oxidiser to mix. In the final time step of the simulation, neither pure fuel
nor pure oxidiser is present in the central slab.

The consequences of increased turbulent mixing for the combustion is demonstrated
by the temporal evolution of the normalised flame surface area Ast/Ast,0, with the initial
flame surface area Ast,0, in Fig. 1 (right). Ast quickly rises with higher Reynolds numbers
and, consequently, the overall consumption of fuel in the domain is increased significantly
as higher turbulence intensities are reached.

The configuration of the DNS and the highly turbulent nature of the combustion is
illustrated in Fig. 2. The exceedingly corrugated iso-surface of the stoichiometric mixture
fraction is shown for the highest turbulence intensity case. The stoichiometric mixture
fraction indicates the position of the reaction zone in non-premixed flames. Additionally,
the local value of the temperature is displayed to show spots of local extinction.

The DNS were performed solving the reactive, unsteady Navier-Stokes equations in the
low Mach number limit using the in-house solver CIAO.16, 17 The momentum equations
are spatially discretised with a fourth-order scheme and time advancement is performed
using a semi-implicit Crank-Nicholson time integration.18 The transport of species mass
fractions is described using the Hirschfelder and Curtiss approximation to the diffusive
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Figure 2. Iso-surface of the stoichiometric mixture fraction in the High Re case. The colour of the iso-surface
indicates the local value of the temperature.

fluxes together with a velocity-correction approach for mass conservation. The temperature
and species equations are advanced by introducing the symmetric operator split of Strang.19

The chemistry operator uses a time-implicit backward difference method.20 The chemistry
is included using finite rate chemistry employing a mechanism for the oxidation of methane
comprising 30 species and 102 reactions capable of capturing the anticipated effects of
localised extinction and re-ignition.

To resolve all scales, from the detailed flame structure to the integral scales of the
turbulent flow fields, computational meshes containing 0.3× 109 to 1.6× 109 grid points
were employed. This results in a system of equations with up to 60 billion degrees of
freedom which must be solved for each of the approximately 11 000 time steps needed for
the transition from an initial laminar solution to a fully turbulent flame. The largest case in
this series, the High Da case, consumed a total of 42 million CPU-h on the supercomputer
JUQUEEN.

3 Modelling

The objective of this work is to move beyond conventional models for LES and de-
velop a data-driven approach, which is able to predict instantaneous, fully-resolved three-
dimensional flow realisations including scalar fields, such as the mixture fraction, by know-
ing solely the coarse-grained data fields. This approach generalises deconvolution tech-
niques as no explicit knowledge of the filter kernel is required.

A neural network called turbulence reconstruction generative adversarial network (TR-
GAN) is used in this work and predominantly motivated by the previous single image
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super-resolution (SISR) works. A pioneer work for SISR was the super-resolution convo-
lutional neural network (SRCNN) designed by Dong et al.6 Great efforts towards SISR
had been made through the community since SRCNN first emerged. Yet most of these
SISR networks showed the deficiency of producing over-smoothed results, owing to fo-
cusing on the peak-signal-to-noise-ratio (PSNR) as the primary metrics. Resultantly, the
high frequency details occurring in the ground truth could not be adequately reconstructed.
This makes such networks especially fatal for turbulence applications, as the small-scale
(high frequency) structures at high wave numbers are exactly what is intended to be re-
stored. Amelioration regarding the PSNR-based SISR networks was elucidated by John-
son et al.,21 who presented the concept “perceptual loss”, i. e. a criterion to optimise the
performance in the VGG-features space that substitutes the PSNR which optimised in the
pixel space.

The other fundamental framework named generative adversarial network (GAN) was
presented by Ref. 22. A GAN is composed of two models, a generator that captures the data
distribution and generates new data, and a discriminator that learns to distinguish whether
a sample stems from the original data distribution (genuine) or the generator (fake). During
training, the generator learns to produce samples that are indistinguishable for the discrim-
inator, while the discriminator learns to more accurately judge the genuineness.

For this work, the state-of-art ESRGAN was adapted to three-dimensional (3-D) tur-
bulence data and a problem-specific, physically-based loss functions was introduced. The
resulting network is called turbulence reconstruction GAN (TRGAN). The TRGAN is sup-
posed to recuperate the fully-resolved DNS results from coarse turbulence data, such as
LES data.

The perceptual loss proposed for the ESRGAN based on VGG-feature space is appar-
ently not as suitable for the turbulence data as the geometrical features from VGG19 are
not representative for turbulent flows. Hence, a new formulation for the cost function was
developed inspired by physical flow constraints.

Before training the TSRGAN as a combined model, the generator is pretrained with
root-mean-square error (RMSE) due to the complexity of the residual-in-residual-dense-
block (RRDB). For the combined model, the loss function for reconstructing velocity fields
is proposed as

l = β1lRADG + β2lpixel + β3lgradient + β4lcontinuity (1)

with β1, β2, β3, and β4 being coefficients weighting the different loss term contributions.
lRADG is the ’realistic average’ discriminator/generator loss, which is the accuracy feed-
back between discriminator and generator as given by Wang et al.7 For a scalar φ, the pixel
loss lpixel is defined as

lpixel = MSE(φpredicted, φDNS) (2)

The mean-square error (MSE) operator is given by

MSE({·}1, {·}2) =
1

Nsamples

Nsamples∑

i=1

({·}i1 − {·}i2)2 (3)

with Nsamples as the number of all samples, i. e. the total number of grid points of the
reconstructed field. If the MSE operator is applied on tensors including vectors, it is applied
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Figure 3. TRGAN network structure. Image from Bode et al.13

to all elements separately. Afterwards the resulting tensor is mapped into a scalar using the
1-norm. The gradient loss lgradient is defined as

lgradient = MSE(∇φpredicted,∇φDNS) (4)

with ∇ as del operator. lcontinuity is the continuity loss, which enforces the continuity
equation in the reconstructed field and reads

lcontinuity = MSE(∇ · upredicted,0) (5)

with u as velocity vector. The TRGAN network is graphically presented in Fig. 3. Note
that differently from the state-of-art SR networks, the TRGAN does not involve up-/ or
downsampling layers. The high-/ and low-resolution turbulence data refer to the energy
spectral property of the discussed turbulence, not the trivial image resolution.

The TRGAN was implemented by using Keras API with TensorFlow backend, and
the training was performed on the JURECA GPU nodes due to the large size of the DNS
dataset. The results for a reconstructed velocity and scalar field are shown in Figs. 4 and 5
for an inert case. Homogeneous isotropic turbulence data were used, and the quality of the
DL closure can be seen.

Training with large data, such as the reactive DNS dataset used in this work, is not
possible without computing clusters. The GPU performance of JURECA, JUWELS (both
at Jülich Supercomputing Centre, Forschungszentrum Jülich), and Claix18 (at IT Center,
RWTH Aachen University) and their scaling performance are depicted in Fig. 6. Here, the
numerical values give the average number of subboxes with dimension 16×16×16, which
were trained to the TRGAN within one minute. The better performance of the Tesla V100
GPUs (JUWELS, CLAIX18) compared to the Tesla K80 GPUs (JURECA) is obvious.
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Figure 4. Velocity reconstruction.

Figure 5. Passive scalar reconstruction.

Figure 6. GPU performance.
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Figure 7. PDF of the mixture fraction P (Z) in the centre slab of the high Re case for the last time step from
Fig. 1 (solid line: no model, dashed line: DL model, dashed-dotted line: DNS).

4 Application

In order to validate the data-driven DL modelling approach presented in Sec. 3, the high
Reynolds number DNS data of an early time step are filtered and interpolated to a coarser
mesh with only one third of the number of points per direction compared to the correspond-
ing DNS. Using this coarser mesh, the mixing results shown in Fig. 1 are recomputed with
and without the DL model. The result is compared to the DNS result. As can be seen in
Fig. 7, the DNS and modelled results match very well while the underresolved simulation
without model mixes too slow.

5 Conclusions

Fully resolved DNSs of a turbulent reactive non-premixed planar temporal jet configuration
and a data-driven DL modelling approach are presented in this work. It is shown how the
combination of computationally expensive simulations and novel LES modelling methods
can be used to accurately predict scalar mixing even on underresolved grids. An estimation
for training cost is given.
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