001     874555
005     20240610121105.0
024 7 _ |a 10.1103/PhysRevE.101.032402
|2 doi
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1538-4519
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2470-0045
|2 ISSN
024 7 _ |a 2470-0053
|2 ISSN
024 7 _ |a 2128/24554
|2 Handle
024 7 _ |a altmetric:77041397
|2 altmetric
024 7 _ |a WOS:000517966800001
|2 WOS
037 _ _ |a FZJ-2020-01509
082 _ _ |a 530
100 1 _ |a Dutta, Annwesha
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Stochastic thermodynamics and modes of operation of a ribosome: A network theoretic perspective
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2020-03-03
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2020-03-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1584359407_19861
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ribosome is one of the largest and most complex macromolecular machines in living cells. It polymerizes a protein in a step-by-step manner as directed by the corresponding nucleotide sequence on the template messenger RNA (mRNA) and this process is referred to as “translation” of the genetic message encoded in the sequence of mRNA transcript. In each successful chemomechanical cycle during the (protein) elongation stage, the ribosome elongates the protein by a single subunit, called amino acid, and steps forward on the template mRNA by three nucleotides called a codon. Therefore, a ribosome is also regarded as a molecular motor for which the mRNA serves as the track, its step size is that of a codon and two molecules of GTP and one molecule of ATP hydrolyzed in that cycle serve as its fuel. What adds further complexity is the existence of competing pathways leading to distinct cycles, branched pathways in each cycle, and futile consumption of fuel that leads neither to elongation of the nascent protein nor forward stepping of the ribosome on its track. We investigate a model formulated in terms of the network of discrete chemomechanical states of a ribosome during the elongation stage of translation. The model is analyzed using a combination of stochastic thermodynamic and kinetic analysis based on a graph-theoretic approach. We derive the exact solution of the corresponding master equations. We represent the steady state in terms of the cycles of the underlying network and discuss the energy transduction processes. We identify the various possible modes of operation of a ribosome in terms of its average velocity and mean rate of GTP hydrolysis. We also compute entropy production as functions of the rates of the interstate transitions and the thermodynamic cost for accuracy of the translation process.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
542 _ _ |i 2020-03-03
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schütz, Gunter M.
|0 P:(DE-Juel1)130966
|b 1
700 1 _ |a Chowdhury, Debashish
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
773 1 8 |a 10.1103/physreve.101.032402
|b American Physical Society (APS)
|d 2020-03-03
|n 3
|p 032402
|3 journal-article
|2 Crossref
|t Physical Review E
|v 101
|y 2020
|x 2470-0045
773 _ _ |a 10.1103/PhysRevE.101.032402
|g Vol. 101, no. 3, p. 032402
|0 PERI:(DE-600)2844562-4
|n 3
|p 032402
|t Physical review / E
|v 101
|y 2020
|x 2470-0045
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874555/files/PhysRevE.101.032402.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874555/files/PhysRevE.101.032402.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874555
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130966
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV E : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBI-5-20200312
|k IBI-5
|l Theoretische Physik der Lebenden Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
999 C 5 |1 A. S. Spirin
|y 2002
|2 Crossref
|t Ribosomes
|o A. S. Spirin Ribosomes 2002
999 C 5 |a 10.1146/annurev.biophys.093008.131427
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-biochem-060408-173330
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nsmb.3177
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9781139003704
|1 J. Frank
|2 Crossref
|9 -- missing cx lookup --
|y 2011
999 C 5 |a 10.1016/j.str.2015.04.007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature09206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |y 2011
|2 Crossref
|t Ribosomes: Structure, Function, and Dynamics
|o Ribosomes: Structure, Function, and Dynamics 2011
999 C 5 |a 10.1371/journal.pcbi.1000865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jtbi.2005.08.007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00249-012-0879-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0134994
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cell.2013.03.032
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1119/1.2757628
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.80.011908
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.79.011916
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2013.03.005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1478-3975/8/2/026005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.82.031912
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s11538-017-0266-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.compbiolchem.2007.07.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bpj.2016.04.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/nar/gku646
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/75/12/126001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jpclett.7b03197
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-6633/aab3ed
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.74.011906
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/28/15/153004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.6.041064
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physa.2017.10.024
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/S1793048010001214
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bpj.2010.02.040
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epje/i2011-11026-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4973544
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.69.1269
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rstb.2016.0182
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nsmb.3193
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-1-4612-3558-3
|1 T. L. Hill
|2 Crossref
|9 -- missing cx lookup --
|y 1989
999 C 5 |a 10.1016/0022-5193(66)90137-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.48.571
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/17/47/010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s10955-010-0050-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/77/50002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1742-5468/2007/07/P07020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nrm1982
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.7554/eLife.03406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pcbi.1003909
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.febslet.2014.08.035
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.94.052117
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/aaa15f
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.79.011917
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1184939
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b903536b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1023/A:1004589714161
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jtbi.2018.11.025
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21