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The ribosome is one of the largest and most complex macromolecular machines in living cells. It polymerizes a
protein in a step-by-step manner as directed by the corresponding nucleotide sequence on the template messenger
RNA (mRNA) and this process is referred to as “translation” of the genetic message encoded in the sequence of
mRNA transcript. In each successful chemomechanical cycle during the (protein) elongation stage, the ribosome
elongates the protein by a single subunit, called amino acid, and steps forward on the template mRNA by three
nucleotides called a codon. Therefore, a ribosome is also regarded as a molecular motor for which the mRNA
serves as the track, its step size is that of a codon and two molecules of GTP and one molecule of ATP hydrolyzed
in that cycle serve as its fuel. What adds further complexity is the existence of competing pathways leading to
distinct cycles, branched pathways in each cycle, and futile consumption of fuel that leads neither to elongation
of the nascent protein nor forward stepping of the ribosome on its track. We investigate a model formulated in
terms of the network of discrete chemomechanical states of a ribosome during the elongation stage of translation.
The model is analyzed using a combination of stochastic thermodynamic and kinetic analysis based on a graph-
theoretic approach. We derive the exact solution of the corresponding master equations. We represent the steady
state in terms of the cycles of the underlying network and discuss the energy transduction processes. We identify
the various possible modes of operation of a ribosome in terms of its average velocity and mean rate of GTP
hydrolysis. We also compute entropy production as functions of the rates of the interstate transitions and the
thermodynamic cost for accuracy of the translation process.
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I. INTRODUCTION

The synthesis of proteins, performed by a macromolecular
machine, called ribosome, is one of the fundamental processes
inside every living cell [1,2]. The sequence of monomeric
subunits of the protein, called amino acid, is directed by the
sequence of the triplets of monomeric subunits of a messenger
RNA (mRNA) template; each triplet is called a codon. In
the language of information processing, the template-directed
polymerization of a protein by a ribosome is called translation
(of genetic message). The ribosome hydrolyzes two molecules
of GTP and one molecule of ATP (a strongly exergonic
or “downhill” reaction) to elongate the nascent protein by
one amino acid. The GTP molecules are hydrolyzed in a
complete elongation cycle whereas the ATP molecule is hy-
drolyzed during the prior aminoacylation reaction that results
in an activated aminoacyl-tRNA (aa-tRNA). The amino acid
brought in by an aa-tRNA at the beginning of an elongation
cycle subsequently forms a peptide bond with the nascent
growing protein. Simultaneously with the elongation of this
polypeptide by one amino acid, the ribosome moves forward
by one codon on the mRNA template. Therefore, a ribosome
can also be regarded as a molecular motor for which the
mRNA template serves as a track; the motor is fueled by GTP
and ATP hydrolysis and its step size on the track is a single
codon.

*Corresponding author: debch@iitk.ac.in

Over the last few decades, enormous progress has been
made in characterizing the structure of the ribosome and its
dynamics during the process of translation by x-ray crys-
tallography, cryoelectron microscopy, and combinations of
biochemical and biophysical single molecule techniques such
as smFRET [3–8]. There are many theoretical studies of the
translation process based on these experimental revelations
[9–20]. Fluitt et al. [21], Rudorf et al. [12], Vieira et al. [22],
and Dana et al. [23] developed detailed stochastic kinetic
models capturing the translation process in the presence of
cognate, near-cognate, and noncognate aa-tRNA and also
considered the inhomogeneity of the mRNA transcript. Our
model is designed to provide a clear understanding of the
energy transduction processes during translation by decom-
posing the complex network of distinct states into its cycles,
focusing on the energetics and thermodynamic picture in
terms of fluxes, their conjugate affinities, and entropy change
associated with every cycle. It helps us understand what
chemical, mechanical, and chemomechanical cycles compete
in the network. It also helps us compute important motor
properties like velocity and hydrolysis rate in terms of external
parameters like concentration of the different particles which
bind to the ribosome. The flux balance relations give us the
expression for stall force and balanced potential.

The directed movement of the ribosome on its mRNA
track is, however, noisy because of the thermal motion of
the surrounding medium and the low concentration of the
molecules involved in the chemical reactions. The ribosome
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can be regarded as a thermodynamically open system that is
coupled to various reservoir potentials. More specifically, the
reservoirs include not only a thermal reservoir at a constant
temperature, but also several chemical reservoirs maintained
at the respective chemical potentials and a “force reservoir”
describing a load force acting on the ribosome. The main
aim of the present work is to improve our theoretical un-
derstanding of the translation process from the perspective
of stochastic thermodynamics [24–35] by a detailed and
quantitative description of the various stages of the chemo-
mechanical cycle that the ribosome undergoes in a single
translation step.

We describe the kinetics of the ribosome in terms of
a Markov network of observable mesoscopic states, using
experimentally measured interstate transition rates [36,37].
For the exact analytical treatment of this multiple-pathway
discrete-state Markov model we develop a graph theoretic
framework, following Refs. [38–40]. In this approach, the
network of the states is represented by a graph consisting
of vertices and edges. Vertices correspond to the observable
mesostates and the directed edges represent the possible
transitions between these states. The stationary solution is
obtained by studying subgraphs of the graph in a systematic
analysis that we outline in this paper.

This approach is powerful since the ratio of the products of
the transition rates along a cycle and its time reversal, that are
of interest from the perspective of stochastic thermodynamics,
is independent of the mesoscopic states. Cycle fluxes, entropy
production rate per cycle, thermodynamic force per cycle
[41–43] and other important quantities can then be calculated
explicitly as a function of the rates. This allows for discussion
of the operation mode of the ribosome in terms of average
velocity and hydrolysis rate.

II. MARKOV MODEL OF THE MECHANOCHEMICAL
CYCLE OF A RIBOSOME

A. Ribosome as a complex nanomachine

Each ribosome is built from two loosely associated sub-
units: (1) the small subunit, which is responsible for all the
processes related to deciphering the genetic code present in
the mRNA, and (2) the large subunit which serves as the
catalytic center where the formation of peptide bonds takes
place. The two subunits are joined together by flexible con-
nectors. A class of adaptor molecules, that bring in the amino
acid subunits, move along the intersubunit space. One end of
the tRNA molecule, that participates in the decoding of the
genetic message, interacts with the mRNA. The other end of
the tRNA, that brings in the amino acid subunit, interacts with
the large subunit. For each end of the tRNA molecule three
binding sites are available on the respective subunits of the
ribosome. These binding sites are designated by the letters “A”
(acceptor site), “P” (peptidyl site) and “E” (exit site), respec-
tively, in that sequence along the direction of translocation
of the tRNAs in the intersubunit space. Each tRNA not only
brings in an amino acid whose incorporation elongates the
polypeptide (protein), but also holds it transiently thereafter
before irreversibly transferring the polypeptide to the next
tRNA.

In order to account for the main features of the elongation
cycle, we introduce a model that is an extended version of the
model of translation developed earlier by Dutta and Chowd-
hury [20]. This model explicitly incorporates four competing
pathways corresponding to four different types of aa-tRNA,
namely, correctly charged cognate tRNA, mischarged cognate
tRNA, correctly charged near-cognate tRNA, and correctly
charged noncognate tRNA. Each of these pathways, shown
in Fig. 1, comprises of five distinct states, each of which
corresponds to a distinct conformational (or “chemical”) state
of the ribosome during translation of a single codon. The
five-state subnetwork along all four pathways looks identical
in spite of the fact that these correspond to four different types
of aa-tRNA. The difference between the four pathways is
captured by the difference in the numerical values of the rates
of the same interstate transitions along different pathways.
Therefore, we begin by explaining the different conforma-
tional changes that the ribosome undergoes along each of
these four pathways.

In Fig. 1 the state labeled by 1 represents the situation
where both the E and A sites of the ribosome are empty while
the site P is occupied by the tRNA carrying the nascent pro-
tein. In step 1 → 2 the ternary complex EF-Tu.GTP.aa-tRNA
with the elongation factor EF-Tu, one GTP, and an aminoacyl-
tRNA (aa-tRNA) binds to the ribosome. The reverse transition
2 → 1 describes the unbinding of the same ternary complex
from the ribosome. While the system in the state 2, the enzyme
GTPase of the EF-Tu is activated, leading to the hydrolysis
of a single GTP molecule to GDP and inorganic phosphate
Pi which is captured by the irreversible transition (2 → 3). At
this stage, the aatRNA may get rejected (3 → 1). The physical
implications of this transition, called kinetic proofreading,
will be discussed further later in this section.

However, if the selected aa-tRNA is not rejected along
the path 3 → 1, the growing polypeptide is then linked by
a peptide bond to the amino acid supplied by the selected
aa-tRNA thereby transferring the polypeptide from the tRNA
located at the P site to the tRNA at the A site. After the
transfer of the polypeptide, the deacylated tRNA remains
at the P site. This “peptidyl transferase” activity of the
ribosome thus results in the elongation of the polypeptide
by one subunit. The composite process comprising the de-
parture of the products of GTP hydrolysis, together with
that of the EF-Tu, and the formation of the peptide bond
between the amino acid supplied by the selected aa-tRNA
and the growing polypeptide is represented by the single
transition 3 → 4.

While the polypeptide gets elongated by one amino acid, a
fresh molecule of GTP enters bound with an elongation factor
EF-G. Spontaneous Brownian (relative) rotation of the two
subunits of the ribosome coincides with the back and forth
transition (4 � 5) after the amino acid incorporation between
the so-called classical and hybrid configurations of the two
tRNA molecules. In the classical configuration, both ends of
the two tRNA molecules correspond to the locations of P and
A sites. In contrast, in the hybrid configuration, the ends of
tRNA molecules interacting with the large subunit are found
at the locations of E and P sites, respectively, while their
opposite ends interacting with the small subunit continue to
be located at the P and A sites, respectively.
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FIG. 1. Pictorial representation of one complete cycle, along with intracycle branched pathways, during the elongation stage of translation
at an arbitrary codon on the mRNA transcript. The ribosome is represented by the three sites where the tRNA binds, viz., the aminoacyl site
(A), the peptidyl site (P), and the exit site (E). Transition 1 to 2 represents the binding of ternary complex EF-Tu.GTP.aa-tRNA to the A site of
the ribosome. 2 to 1 represents the codon-anticodon mismatch. Transition 2 to 3 represents the hydrolysis of GTP for proofreading to ensure
whether the aa-tRNA is cognate. The 3 to 1 transition represents the rejection aa-tRNA as a result of proofreading. During transition 3 to 4,
the peptide bond formation takes place by linking the amino acid to the growing nascent protein. Transition between 4 and 5 represents the
Brownian ratchet motion and 5 to 1 represents the hydrolysis of GTP and translocation of the ribosome on the mRNA track.

Finally the hydrolysis of the fresh GTP drives the irre-
versible transition 5 → 1 along the pathway for correct amino
acid incorporation, thereby completing a cycle. This involves
the translocation of the ribosome on its track by one codon
and, simultaneously, that of the two tRNAs inside the ribo-
some by one binding site also on the small subunit, followed
by the deacylated (i.e., bare) tRNA exiting from the E site. The
EF-G.GDP complex dissociates from the ribosome and the
initial state 1 is again attained. The deacylated tRNA is then
aminoacylated (“charged”) by an enzyme, called aminoacyl
tRNA synthetase, by hydrolyzing a molecule of adenosine
triphosphate (ATP) into adenosine monophosphate (AMP)
and inorganic pyrophosphate (PPi). It is often believed that
the energy of the chemical bond between the amino acid
and tRNA is later used by the ribosome for the formation
of peptide bond between the amino acid and the nascent
polypeptide [1].

For clarity, Fig. 2 indicates how these internal processes
along each of the four pathways relate to the translocation

of the ribosome along the mRNA template. The forward
movement by one codon occurs from state 5 and leads to
state 1. The total displacement from the start codon at time
t is an integer multiple n of the average length � ≈ 1 nm of a
codon where n is the number of elongation cycles completed
up to time t . Hence the average ribosome velocity v along the
mRNA is proportional to the elongation rate e = v/� which is
the average number of completed elongation cycles per time
unit which is identical to the average rate of elongation of the
nascent protein. Since in this paper we treat the ribosome as a
molecular motor, we use the term velocity instead of the rate
of elongation.

In reality, the incoming aa-tRNA need not be cognate to
the codon in the ribosomal A site (correct aa-tRNA). Instead,
it may be a mischarged cognate (wrongly charged), a near-
cognate (one of the three nucleotides of the aa-tRNA anti-
codon does not match the three nucleotides in the codon), or
a noncognate (none of the nucleotides on the aa-tRNA match)
aa-tRNA. Therefore, the overall model of the elongation cycle
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FIG. 2. A schematic representation of the Markov model of
translation. Both the chemical or conformational states of the ribo-
some at a given codon as well as the interstate transitions are shown,
along with the sequence of codons on the mRNA template that also
indicate the positions of the ribosome on its track. The circular discs
labeled by the indices 1, . . . , 5 represent the chemical or conforma-
tional states of the ribosome at a codon while the tick marks on the
horizontal axis labeled by . . . , ( j − 1)�, j, ( j + 1)�, . . . denote the
positions of the successive codons.

consists of four subnetworks, as shown in Fig. 3, each of
which looks identical to the five-state network of Fig. 1. The
binding of the four possible aa-tRNA molecules (each as a
distinct ternary complex formed with GTP and EF-Tu) cause
transitions to their respective subnetworks from the state 1.

High fidelity of translation beyond the level guaranteed by
thermodynamics is known to arise from kinetic proofreading
(transition 3 → 1 in Fig. 1) whereby an aa-tRNA is rejected.
The overall network depicted in Fig. 3 implies that even a
correctly charged cognate tRNA may get rejected by kinetic

FIG. 3. The kinetic Markov network of the ribosomal elongation
cycle. At every codon position, the ribosome undergoes changes be-
tween different conformations that are labeled by i = 1, 2, 3, . . . , 17.
The ki j are the transition rates to move from conformation i to
conformation j. Notice that there are multiple pathways that the
ribosome can follow.

proofreading, albeit with a low probability, in spite of perfect
codon-anticodon matching. In contrast, a mischarged cognate
aa-tRNA may escape detection by the same quality control
mechanism leading to an eventual translational error by incor-
porating a wrong amino acid in the elongating protein.

It may be noted that in the original version of the model
reported earlier by Dutta and Chowdhury [20], some of the
transitions were assumed to be irreversible because the reverse
transitions were not observed in any experiments. In the
extended version adopted here all the irreversible transitions
are replaced by reversible transitions where the transitions that
have not been observed experimentally are treated as highly
improbable (Fig. 1) by assigning a hypothetical small rate
10−5 s−1. This weak reversibility condition [44], which is
based on the law of mass action, allows for a discussion of
the entropy production in the process. Moreover, the cycle
“1-14-15-16-17-1” which corresponds to the incorporation of
noncognate tRNA is very improbable. Therefore the proba-
bility of a ribosome being in the conformational states 14,
15, 16, 17 must be extremely low. To ensure that, we need
to have very low forward rates and very high rejection rates.
To elaborate upon this point, let us consider the transition of a
ribosome from 1 to 14. While the rate of transition from state
1 to state 14 is very low, the ribosome, if it somehow reaches
the state 14, gets trapped in that state if the rejection rate
is also low. This would lead to a non-negligible probability
of occurrence of state 14. To avoid this anomaly, a high
rate 105 s−1 is assigned to rejection rates that have not been
observed in any experiments so far.

B. Stochastic reaction kinetics

During the course of an elongation cycle, the ribosome is
fed by energy from EF-Tu and EF-G mediated hydrolysis of
GTP to GDP and inorganic phosphate Pi and ATP hydrolysis
during aminoacylation for ribosome catalyzed transpeptida-
tion. These free energies, �G in each hydrolysis, are con-
sumed for (a) decoding the genetic information encoded in the
codon sequences of the mRNA into the amino acid sequence
forming the polypeptide, and (b) also for translocation along
the mRNA track.

The complex ribosome machine can thus be viewed
as a small system coupled to multiple reservoirs that
act as sources and sinks of particles and energy for the
system (Fig. 4). Under isothermal conditions the differ-
ent reservoirs are (1) thermal reservoir at temperature T ;
(2) particle reservoirs for the chemical species aa-tRNA.EF-
Tu.GTP, aa-tRNA.EF-Tu.GDP, EF-Tu.GDP, EF-G.GTP, EF-
G.GDP, Pi, ATP, AMP, and PPi characterized by the chemi-
cal potentials μaa-tRNA.EF-Tu.GTP, μaa-tRNA.EF-Tu.GDP, μEF-Tu.GDP,
μEF-G.GTP, μEF-G.GDP, μPi, μATP, μAMP, μPPi; (3) “force reser-
voir” that comes into play in the presence of an external force
Fext acting on the ribosome, such as a load force opposing the
natural forward stepping of the machine.

The ribosome may remain attached to a membrane and pull
the mRNA template through it, translating one codon after
another. In contrast, we have assumed the mRNA template
to be static along which the ribosome steps forward unidi-
rectionally by one codon at a time. The difference between
the two scenarios is merely the difference in the choice of
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FIG. 4. Overview of the different reservoirs which are in contact
with the Ribosome machinery, viz. (i) heat reservoir characterized
by temperature T ; (ii) particle reservoirs for the chemical species aa-
tRNA.EF-Tu.GTP, aa-tRNA.EF-Tu.GDP, EF-Tu.GDP, EF-G.GTP,
EF-G.GDP, and Pi characterized by their respective chemical poten-
tials; and (iii) force reservoir characterized by the force Fext.

the frame of reference, as pointed out explicitly earlier in a
paper by Cozzarelli et al. [45]. The experimental setup that
faithfully captures the scenario envisaged in our theoretical
modeling is that developed a few years ago by Bustamante
and collaborators [46].

The extra work that is done in the mechanical movement
on the mRNA track in order to overcome the load force is
also supplied by the free energy released in hydrolysis. A
load force leads to a reduction in the speed of the ribosome,
unless it is compensated (or overcompensated) by an increase
of the chemical potential differences that contribute to the free
energy. Analogously, an external force may act in the same
direction as the natural motion of the ribosome, thus either
enhancing its speed or reducing the free energy required from
hydrolysis.

Thus the functioning of the ribosome machine depends on
the thermodynamic forces generated by chemical potential
differences of the particle reservoirs and on the external force
Fext applied to the machine. The chemical potential differences
of the particle reservoirs for the ribosome apparatus arising
from hydrolysis are given by

�μTu,1 = μaa-tRNA.EF-Tu.GTP − μEF-Tu.GDP − μPi, (1)

�μTu,2 = μaa-tRNA.EF-Tu.GTP − μaa-tRNA.EF-Tu.GDP − μPi, (2)

�μG = μEF-G.GTP − μEF-G.GDP − μPi, (3)

�μA = μATP − μAMP − μPPi. (4)

It should be noted that EF-Tu is a GTPase that catalyzes the
selection and binding of aa-tRNA with the help of hydrolysis
of chemical fuel GTP whereas EF-G is a GTPase that cat-
alyzes the translocation step of the ribosome.

The system attains chemical equilibrium, without any
average net displacement of the ribosome, when �μTu,1 =
�μTu,2 = �μG = �μA = 0. This condition is sufficient, but
not necessary, for a system to attain equilibrium. Indeed, a
much weaker requirement that is both necessary and sufficient
for attaining equilibrium is that the difference of chemical
potentials along the cycles must vanish. However, for sim-
plicity (and due to lack of information from experiments in
this regard), we choose all chemical potential differences to
be zero.

When μaa-tRNA.EF-Tu.GTP � μEF-Tu.GDP + μPi and
μEF-G.GTP � μEF-G.GDP + μPi, the likelihood that the GTP
will bind to the active site for hydrolysis is much higher
than the binding of GDP for GTP synthesis. Again, μATP �
μAMP + μPPi increases the likelihood that deacyl tRNA gets
aminoacylated with the help of aminoacyl tRNA synthetase.
These nonvanishing chemical potential differences drive the
system out of equilibrium and generate a directed movement
of the ribosome as indicated above. Moreover, the conversion
of chemical energy into mechanical energy involves a thermo-
dynamic cost which results in an increase of the entropy in the
environment.

From this thermodynamic perspective, the biological pro-
cesses that the ribosome undergoes during an elongation
cycle can be understood as Markovian transitions between the
distinct states, driven by thermal fluctuations, external forces,
and chemical reservoirs that supply the molecules required for
the transitions to take place. In our approach, the transition
rates between the states are assumed to be independent of
the spatial position of the ribosome on the mRNA track.
This allows us to study the elongation cycle just in terms of
the internal states of the ribosome, without reference to its
location on the mRNA template.

Thus the model reduces to a multipathway process as
shown in Fig. 3, with the transition rates from a state i to
some other state j denoted by ki j . The experimental values
of the rate constants used in our model are shown in Table I.
The rates depend on the concentrations of the complexes that
bind to the ribosome in the following manner:

k12 = ω0
12 [aa-tRNA.EF-Tu.GTP]co,

k16 = ω0
16 [aa-tRNA.EF-Tu.GTP]mc,

k1,10 = ω0
1,10 [aa-tRNA.EF-Tu.GTP]nr ,

k1,14 = ω0
1,14 [aa-tRNA.EF-Tu.GTP]no,

k45 = ω0
45 [EF-G.GTP],

k89 = ω0
89 [EF-G.GTP],

k12,13 = ω0
12,13 [EF-G.GTP],

k14,15 = ω0
14,15 [EF-G.GTP],

k13 = ω0
13 [aa-tRNA.EF-Tu.GDP] [Pi],

k17 = ω0
17 [aa-tRNA.EF-Tu.GDP] [Pi],

k1,11 = ω0
1,11 [aa-tRNA.EF-Tu.GDP] [Pi],

k1,15 = ω0
1,15 [aa-tRNA.EF-Tu.GDP] [Pi],

k43 = ω0
43 [EF-Tu.GDP] [Pi],

k12,11 = ω0
12,11 [EF-Tu.GDP] [Pi],

k16,15 = ω0
16,15 [EF-Tu.GDP] [Pi],

k87 = ω0
87 [EF-Tu.GDP] [Pi],
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TABLE I. Values of the rate constants used in our model.

For correctly charged
cognate tRNA

For incorrectly charged
cognate tRNA For near-cognate tRNA For noncognate tRNA

ω0
12 = 170 ± 25 μM−1 s−1 a ω0

16 = 170 ± 25 μM−1 s−1 ω0
1,10 = 170 ± 25 μM−1 s−1 a ω0

1,14 = 170 ± 25 μM−1 s−1

k21 = 700 ± 270 s−1 a k61 = 700 ± 270 s−1 k10,1 = 700 ± 270 s−1 a k14,1 = 700 ± 270 s−1

k23 = 1500 ± 450 s−1 a k67 = 1500 ± 450 s−1 k10,11 = 1500 ± 450 s−1 a k14,15 = 10−5 s−1

k32 = 2 ± 0.6 s−1 a k76 = 2 ± 0.6 s−1 k11,10 = 1100 ± 330 s−1 a k15,14 = 105 s−1

k31 = 1 s−1 a k71 = 1 s−1 k11,1 = 4 ± 0.7 s−1 a k15,1 = 105 s−1

ω0
13 = 4 × 10−9 μM−2 s−1 ω0

17 = 4 × 10−7 μM−2 s−1 ω0
1,11 = 4 × 10−9 μM−1 s−2 ω0

1,15 = 4 × 10−9 μM−2 s−1

k34 = 200 ± 40 s−1 a k78 = 200 ± 40 s−1 k11,12 = 0.26 ± 0.04 s−1 a k15,16 = 10−5 s−1

ω0
43 = 4 × 10−9 s−1 ω0

87 = 4 × 10−9 μM−2 s−1 ω0
12,11 = 4 × 10−9 μM−2 s−1 ω0

16,15 = 40 μM−2 s−1

ω0
45 = 55 ± 6 μM−1 s−1 b ω0

89 = 55 ± 6 μM−1 s−1 ω0
12,13 = 55 ± 6 μM−1 s−1 ω0

16,17 = 10−6 μM−1 s−1

k54 = 65 ± 10 s−1 b k98 = 65 ± 10 s−1 k13,12 = 65 ± 10 s−1 k17,16 = 105 s−1

k51 = 4 ± 1 s−1 b k91 = 4 ± 1 s−1 k13,1 = 4 ± 1 s−1 k17,1 = 10−5 s−1

k15 = 10−5 s−1 k19 = 10−5 s−1 k1,13 = 10−5 s−1 k1,17 = 10−5 s−1

aReference [47].
bReference [37].

k15 = ω0
15 [EF-G.GDP] [Pi],

k17 = ω0
17 [EF-G.GDP] [Pi].

Here the square brackets [.] denote the concentration of
the complexes. The subscript co, mc, nr, and no represent the
cognate, mischarged, near-cognate, and noncognate aa-tRNA
respectively. The ωi j denote the binding rate constant for the
complexes that bind to the ribosome.

For our calculations, we have used the concentration of
ternary complexes of cognate, near-cognate, and noncognate
aa-tRNA to be 50 μM, i.e.,

[aa-tRNA.EF-Tu.GTP]co = [aa-tRNA.EF-Tu.GTP]nr =
[aa-tRNA.EF-Tu.GTP]no = [EF-G.GTP] = 50 μM.

The concentration of the mischarged aa-tRNA ternary
complex is taken to be 5 μM. We have taken the concentration
of mischarged ternary complex to be low because the rela-
tively rare event of mischarging of aa-tRNA occurs only when
the aminoacylation of tRNA escapes quality control done be
by amino acyl tRNA synthetase. This error generally occurs
when the cell is under stress. The concentration for the rest
of the complexes were taken to be [aa-tRNA.EF-Tu.GDP] =
[EF-Tu.GDP] = [EF-G.GDP] = [Pi] = 50 μM.

We have used the experimental transition rates that were
reported by Rodnina et al. [36] (steps involving initial bind-
ing, accommodation, proofreading, and peptide elongation
for cognate and near-cognate aa-tRNA) and Belardinelli
et al. [37] (steps involving translocation). The experiments
in Ref. [36] were conducted at 20 ◦C, whereas in Ref. [37]
the experiments were carried out at 37 ◦C. Since the rates
in these experiments are very sensitive to temperature, we
have estimated the rates at 37 ◦C that correspond to the rates
reported in Ref. [36] at 20 ◦C using the Arrhenius equation
following the method used by Rudorf et al. [12]. Moreover,
we have assumed that the steps involved in translocation have
the same rates for cognate, mischarged, and near-cognate
aa-tRNA [22], as the movements involved in translocation
are practically independent of the extent of codon-anticodon
matching. Furthermore, we have also assumed the transition
rates for the mischarged cognate aa-tRNA to be identical
to those of cognate aa-tRNA, because both exhibit identical
codon-anticodon base pairing [48]. For the case of noncognate

aa-tRNA, the transition rates are experimentally unavailable
but, as expected, the chances of their incorporation is negligi-
bly small.

III. RESULTS AND DISCUSSION I: GENERALIZED
THERMODYNAMIC FORCES AND FLUXES

A. Stationary state of the elongation cycle

To keep track of the position of the ribosome along the
mRNA template we describe the ribosome by its chemical
state i at time t and the number of monomers nm in the
polypeptide chain that it has polymerized up to time t . This
number directly yields the displacement �x = nm� by time t
along the mRNA. The stochasticity of the process then leads
to a description of the dynamics in terms of the probability
Pi(nm, t ) that at time t the ribosome is at “position” nm in the
“chemical” state i.

The full master equations (A1)–(A17) for the probability to
find the ribosome at time t in the chemical state i at codon nm

are given in Appendix A. From these equations, one obtains
the reduced master equation for the probability distribution
Pi(t ) for the internal states by summing over all positions nm

and defining Pi(t ) = ∑
nm

Pi(nm, t ). This yields

dPi(t )

dt
=

7∑
j=1

[k jiPj (t ) − ki jPi(t )] (5)

for the probability distribution of the chemical states.
In the stationary state the time dependence drops out

from both sides of the reduced master equation (5). For the
steady-state probabilities, the master equation can be solved
numerically very efficiently with standard computer routines
for any choice of the numerical values of the transition rates.
However, we are interested in the exact analytical solution,
i.e., in the stationary probabilities as functions of the transition
rates.

To this end, we adapt the ideas of [40] in which the Markov
network shown in Fig. 3 is represented by a graph where each
of the vertices represents a distinct state i (i = 1, 2, . . . , 17)
and the directed edges i → j represent the possible transitions
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FIG. 5. Graph representation: Panel (a) shows the undirected graph for our network as shown in Fig. 3 and panel (b) shows an example of
spanning tree for the undirected graph. There are in total 14 641 spanning trees for our network.

from state i to state j. From the graph an undirected graph is
obtained by replacing the directed edges by undirected edges
[see Fig. 5(a)]. A spanning tree of an undirected graph is
a subgraph which is maximal in the sense that it includes
all the vertices of the graph, with minimum possible edges
which implies the absence of any loop [see Fig. 5(b)]. A
directed spanning tree, say the μth (μ = 1, 2, . . . , M), T μ

i (G)
of a graph G, can be obtained by directing all the edges
of the undirected spanning tree T μ(G) towards the vertex i.
To each of the directed spanning trees T μ

i (G), we assign a
numerical value, A(T μ

i )(G), which is defined as the product
of the |V | − 1 transition rates in the tree. The steady state
probability distributions are then given by

Pi = Z−1
M∑

μ=1

A
(
T μ

i

)
, (6)

where the normalization factor

Z =
|V |∑
i=1

M∑
μ=1

A
(
T μ

i

)
(7)

plays a role similar to that of the partition function. The
detailed step-by-step derivation of Pi for a smaller network
is given in Appendix B. We have written a dedicated MATLAB

code that computes all the steps in the graph theoretic calcu-
lation.

Using the experimentally measured values of the rates
listed in Table I in the analytical expressions for Pi (i =
1, 2, . . . , 17) one obtains the numerical values as shown in
Table II.

By ergodicity, the stationary values Pi represent the fraction
of time the ribosome spends in state i. We point out that for the
correctly charged cognate aa-tRNA the overwhelming amount
of time (>80%) is spent in state 5 (from which translocation,
accompanied by GTP hydrolysis and EF-G.GDP dissocia-
tion, takes place), followed by that in state 3 (from which
proofreading and elongation, accompanied by EF-Tu.GDP
dissociation, take place). This is followed by the time spent
in states 9 and 6 for similar reasons in case of mischarged
aa-tRNA. This is again followed by the probability of the
states 13 and then 11 for the same reasons in the case of
near-cognate aa-tRNA. The incorporation of near-cognate

amino acid has much lower probability than mischarged aa-
tRNA as the aa-tRNAs go through the quality control process
of the ribosome. The probability of the ribosome incorporat-
ing a noncognate amino acid is negligibly small.

B. Transition flux, cycle flux, and their relations

The right hand side of the master equation [(A1)–(A17)]
(as shown in Appendix A) is the negative sum of the net
probability currents

Ji j (t ) = ki jPi(t ) − k jiPj (t ) (8)

from state i to state j. Notice that all pairs i and j that
contribute to the master equation are neighbors in the network
graph Fig. 3. For the steady state solution Pi, the associated
stationary probability currents ki jPi − k jiPj are denoted by Ji j ,
without argument t . They are related to the macroscopic mean
transition fluxes

J∗
i j := ki jNi − k jiNj (9)

between states i and j in the direction i → j, where in an
ensemble of N identical ribosomes translating an mRNA an
average of Ni are in state i. Since in the stationary state one
has Ni = NPi one finds

J∗
i j = N (ki jPi − k jiPj ) = NJi j . (10)

Therefore, we shall refer to the stationary probability currents
Ji j = −Jji as transition fluxes. If the ribosome would be in
full thermal equilibrium (i.e., not only with respect to the
temperature), the process would satisfy detailed balance and,

TABLE II. Numerical values for the probabilities.

P1 = 0.000 59 P2 = 0.0023
P3 = 0.017 P4 = 0.021
P5 = 0.84 P6 = 0.000 23
P7 = 0.0017 P8 = 0.0021
P9 = 0.084 P10 = 0.0071
P11 = 0.0096 P12 = 0.000 016
P13 = 0.000 62 P14 = 0.007
P15 = 4.2 × 10−13 P16 = 5.9 × 10−14

P17 = 5.9 × 10−14
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FIG. 6. Graphs (a)–(f) show the six different loops (unoriented cycles) labeled by κ = a, b, . . . , f and indicated by the solid lines that are
present in Fig. 5.

consequently, all transition fluxes would vanish. However,
as pointed out above, this is not the case because of the
nonequilibrium nature of the steady state of the model under
investigation here.

Next we define the auxiliary variables Qi(t ) :=∑
nm

nmPi(nm, t ). With the step length � of a translocation
from one codon to the next, one obtains from the Qi(t )
the mean position X (t ) = �

∑
i Qi(t ) and the mean velocity

v(t ) = Ẋ (t ) of the ribosome. From the full master equation
(A1)–(A7) one obtains (by shifting the summation index
in the sum over nm for the terms involving site nm ± 1) the
simple expression

v(t ) = �[J51(t ) + J91(t ) + J13,1(t ) + J17,1(t )] (11)

for the average velocity for the ribosome.
In a similar fashion one obtains the mean hydrolysis

rate. One introduces as a stochastic variable the net number
m(t ) of GTP hydrolysis and effective GTP synthesis events.
This number is incremented by +1 for say 2 → 3, 5 →
1 takes place and is incremented by −1 when the reverse
transitions take place. This yields a master equation for the
joint probability Pi(nm, m, t ) similar to (A1)–(A7), but with
terms like k51P5(nm − 1, m − 1, t ), k32P3(nm, m + 1, t ) and
so on instead of k51P5(nm − 1, t ), k32P3(nm, t ) (and so on).
The net hydrolysis up to time t is then given by H (t ) =∑

i

∑
nm

∑
m mPi(nm, m, t ) and the master equation yields the

exact expression

h(t ) = J23(t ) + J67(t ) + J10,11(t ) + J14,15(t ) + J51(t )

+ J91(t ) + J13,1(t ) + J17,1(t ) (12)

for mean hydrolysis rate h(t ) = dH (t )/dt . In the steady state,
the time dependence drops out of both sides of (11) as well as
those of (12).

In order to get deeper insight into the nonequilibrium
nature of the chemomechanical cycle of the ribosome we
next express the transition fluxes in terms of cycle fluxes. Six
different single loops (cycles regardless of their orientation),
labeled by κ ∈ {(a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (k),
(l)} in Figs. 6 and 7, can arise in the network model shown in
Fig. 3. It will transpire that transition cycles allow for a deeper
understanding of the kinetic activity of the network than just
by focusing on the transition fluxes.

To make the role of cycles quantitative, we first define the
cycle products

�κ± :=
∏

(i, j)∈(κ±)

ki j (13)

as the products of rates ki j of the edges contributing to
cycle κ in clockwise (+) or anticlockwise (−) orientations,
respectively.

Next we summarize a graph theoretic approach for deriving
the analytical expressions for the cycle fluxes. Following Hill
[38], we associate to a given oriented cycle (κ±) the cycle rate
constants

Jκ,± =
∑

μ,(i, j)

ki jA
(
T μ

i

)
(14)

over those directed trees μ and edges (i, j) that contribute
to all graphs with cycle (κ±). Notice that adding a new
directed edge oriented from i to j to a directed spanning
tree T μ

i converts the latter into a graph T μ
i j that has a single

oriented cycle. Thus, from the undirected spanning trees one
can construct the flux diagrams each of which has a single
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FIG. 7. Graphs (g)–(l) show the six different loops (unoriented cycles) labeled by κ = g, h, . . . , l and indicated by the solid lines that are
present in Fig. 5.

undirected cycle and directed branches that feed into this cycle. Then, it follows that

Jκ,± = �κ,±Rκ/Z, (15)

where

Rκ =
∑

all the flux diagrams
containing cycle κ

⎛
⎜⎜⎜⎝

∏
(i, j) are the directed edges

feeding into cycleκin the flux diagram

ki j

⎞
⎟⎟⎟⎠. (16)

Expression (15) for Jκ,± can be interpreted as the cycle
product multiplied by the weight factor Rκ/Z where the latter
accounts for the flux from the rest of the network into the
cycle. Using the expressions above, we arrive at the expression
for the cycle fluxes:

Jκ = Jκ,+ − Jκ,− = (�κ,+ − �κ,−)Rκ/Z, (17)

where Rκ is given by (16). Both Jκ,+ and Jκ,− are positive
quantities while Jκ can be positive or negative.

For clear understanding, as an example, all the flux dia-
grams corresponding to the smaller network are displayed in
Appendix C along with the outline of the related calculations.
Each transition flux through the oriented edge (i, j) can be
decomposed into the sum of cycle fluxes. This decomposition
for the 17-state model yields

J12 = J23 = Ja + Jg, (18)

J13 = −Ja + Jc, (19)

J34 = J45 = J51 = Jc + Jg, (20)

J16 = J67 = −Jb − Jh, (21)

J17 = Jb − Jd , (22)

J78 = J89 = J91 = −Jd − Jh, (23)

J1,10 = J10,11 = Je + Jk, (24)

J1,11 = −Je + Ji, (25)

J11,12 = J12,13 = J13,1 = Ji + Jk, (26)

J1,14 = J14,15 = −Jf − Jl , (27)

J1,15 = −Jj + Jf , (28)

J15,16 = J16,17 = J17,1 = −Jj − Jl . (29)

Note that this list of decompositions is complete. All transi-
tion fluxes are uniquely expressed in terms of cycle fluxes.
However, it is not possible to invert this and express the
cycle fluxes in terms of transition fluxes because only four
transition fluxes are linearly independent while the number
of cycle fluxes is 6. The numerical values of the cycle fluxes
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TABLE III. Numerical values for �κ,± and the cycle fluxes Jκ,±,
obtained from the rates of Table I. Since Jκ,+ � Jκ,− for all cycles κ ,
one has Jκ ≈ Jκ,+. The units of the cycle products �κ,± depend on
the loop κ . The units for Jκ,+, Jκ,−, and Jκ are s−1.

κ �κ,+ �κ,− Jκ

(a) 1.3 × 107 0.014 0.017
(b) 0.014 1.3 × 106 −0.0017
(c) 22 6.5 × 10−9 5.8 × 10−9

(d) 6.5 × 10−9 22 −5.8 × 10−9

(e) 5.1 × 107 7.7 0.0385
(f) 700 8500 −3.3 × 10−8

(g) 2.8 × 1013 9.1 × 10−6 3.38
(h) 9.1 × 10−6 2.8 × 1012 −0.34
(i) 0.029 2.6 × 10−8 4.3 × 10−12

(j) 1 × 1010 1 × 10−20 2.9 × 10−9

(k) 3.6 × 1010 0.0050 0.0025
(l) 7 × 1012 8.5 × 10−17 2.9 × 10−9

are given in Table III. The largest flux goes through cycle
(g,+), which represents correct translation with correctly
charged cognate aa-tRNA. The second largest flux passes
through cycle (h,−), corresponding to incorporation of wrong
amino acid due mischarged cognate aa-tRNA binding. The
third largest flux passes through cycle (e,+), corresponding to
successful error correction when near-cognate aa-tRNA binds.
The cycle (k,+), (unsuccessful error correction leading up to
missense error) has a small flux.

It is worth pointing out here that our decomposition into
cycles is complete and carried out by inspection. A formal
prescription for identifying the independent thermodynamic
forces (affinities) has been proposed in recent years by Es-
posito and collaborators [49,50]. However, the latter formal
approach is not required for analyzing the entropy production
of the specific machine (ribosome) and specific process (trans-
lation) under our consideration in this paper. Nevertheless, we
hope to report the alternative analysis, based on Esposito’s
prescription, for the kinetics of template-directed polymeriza-
tion, in a future publication.

C. Energy balance in steady state

The two ratios

Jκ,+
Jκ,−

= �κ,+
�κ,−

=: eXκ /kBT (30)

depend only on the rate constants around the cycle κ itself.
They define the so-called generalized thermodynamic forces
Xκ [38,40] generated in a nonequilibrium system when cou-
pled to different reservoirs. In a stationary state, which does
not involve any change in internal energy, these forces are
equivalent to the heat exchange �Qκ that arises from the tran-
sitions through a loop κ and proportional to the corresponding
entropy change

�Sκ = Xκ/T = �Qκ/T, (31)

thus exposing the entropic nature of the generalized thermo-
dynamic forces in the stationary regime.

Thus the generalized thermodynamic forces highlight the
connection between the irreversibility of a nonequilibrium
process and its heat dissipation since (30) implies

Jκ = Jκ,+(1 − e−�Qκ /kBT ) = Jκ,+(1 − e−Xκ /kBT ), (32)

which demonstrates (a) that the heat dissipation and the
cycle flux vanish simultaneously (corresponding to thermal
equilibrium), and (b) that otherwise (i.e., out of equilibrium)
they always have the same sign. In other words, the general-
ized thermodynamic forces express the direction of the cycle
fluxes.

The ratios (30) also provide a link between the kinetics and
thermodynamics of the network which can be further devel-
oped as follows. During the transition from state i to state j,
the internal energy Ui of the system in state i can change due to
three factors: (i) a chemical potential change �μi j = μi − μ j

arising from the coupling of the states to the particle reservoirs
with the chemical potentials μaa-tRNA.EF-Tu.GTP, μEF-Tu.GDP,
μEF-G.GTP, μEF-G.GDP, μATP, μAMP, μPPi, and μPi introduced
above, (ii) the mechanical work Wi j which the machine per-
forms in the transition i → j to overcome the external force
Fext, and (iii) the heat exchange Qi j with the surrounding
medium. Conservation of energy for the transition from i to
j therefore reads

Ui − Uj = �μi j − Wi j − Qi j . (33)

Next we apply conservation of energy to a cycle. Since
the internal energy is a state function, the total change in the
internal energy for a cycle must be zero in the steady state.
The heat exchange �Qκ = T �Sκ in a cycle (κ,+) is given by
(30) in terms of the reaction rates. For a cycle (κ,+), energy
conservation (33) thus reads

�μκ,+ − Wκ,+ − �Qκ = 0, (34)

where Wκ,+ is the work done against the external force in the
complete cycle in positive direction and �μκ,+ denotes the
net chemical potential difference in the complete cycle.

Using (30) and (31) in Eq. (34) we arrive at the equivalent
steady state balance condition

�μκ,+ − Wκ,+ = Xκ = kBT ln
�κ,+
�κ,−

, (35)

which yields the relation between the transition rates (through
�κ,±), the chemical energy input, and the mechanical work
for any cycle in the network, conveniently expressed through
the stationary generalized thermodynamic forces. This rela-
tion will be used below to determine the range of normal
operation of the ribosome, i.e., with positive mean velocity of
the ribosome along the mRNA and positive rate of hydrolysis.

IV. RESULTS AND DISCUSSION II: MODES OF
OPERATION, MECHANICS, AND STOCHASTIC

THERMODYNAMICS

A. Modes of operation

The analysis carried out in this subsection for the ribosome
is very similar to that reported earlier [51] for the cytoskeletal
molecular motor kinesin. As elaborated above, the elonga-
tion factors EF-Tu and EF-G catalyze the hydrolysis of the
fuel molecules, i.e., GTP, into GDP and Pi. Also, ATP is
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hydrolyzed into AMP and PPi during aminoacylation with
help of aminoacyl synthetase. The energy released in these
reactions acts as the chemical energy input for the ribosome
machine in each elongation cycle. Thus the operation of
the ribosome depends on the respective chemical potential
differences and the external force Fext. Its modes of operation
are characterized in terms of the average velocity and the
average rate of hydrolysis both of which are positive in the
normal mode of operation. In the following, we identify
the different modes of operation of the ribosome, normal
as well as abnormal, exploiting the cyclic energy balance
relations (34).

1. Sign of cycle fluxes and modes of operation

Substituting (20), (23), (26), and (29) into the time-
independent (11) we get

v = �[J51 + J91 + J13,1 + J17,1]

= �(Jc − Jd + Jg − Jh + Ji − Jj + Jk − Jl ) (36)

for the average velocity of the ribosome in terms of the cycle
fluxes, which yields the numerical value 3.7 nm s−1 after
substitution of the values of parameters listed in Table III.
Our result is of the same order of the experimentally observed
elongation rates [52]. Note that while our result is in nm/s,
the experimentally observed rate is given in aa/s and recall
that for every addition of amino acid, the ribosome takes one
codon step which is approximately equal to 1 nm.

Likewise, substituting the expressions (18), (21), (24),
(27), (20), (23), (26), and (29) into (12) in the steady state
we get the rate of GTP hydrolysis

h = J23 + J67 + J10,11 + J14,15 + J51 + J91 + J13,1 + J17,1

= Ja − Jb + Jc − Jd + Je − Jf + Ji − Jj

+ 2(Jg − Jh + Jk − Jl ) (37)

in the network model in terms of the cycle fluxes; it predicts
the numerical value h = 7.5 s−1 after substitution of the pa-
rameter values listed in Table III.

To investigate under which external conditions the ribo-
some functions in normal mode, we make a simplification of
the calculation by showing only the GTP and ATP molecules
explicitly, devoid of factors. These factors are essentially
GTPase and ATPase enzymes which catalyze, i.e., speed up,
the GTP and ATP hydrolysis without affecting the overall
energy released or absorbed in the reaction, i.e., �μ. Ac-
cording to this simplification, two GTP molecules and one
ATP molecule are hydrolyzed for every mechanical step of
the ribosome from one codon to the next. The hydrolysis is
then driven by a chemical potential difference �μ that comes
into play in these transitions. Since the sign of the transition
fluxes does not depend in a straightforward fashion on the
chemical potential difference and the external force, we study
the process in terms of the cycle fluxes.

For the 12 individual cycles labeled by κ , as displayed in
Figs. 6 and 7, the analysis of the process discussed in detail in

Sec. II A yields

�μa,+ = �μe,+ = �μ, (38)

�μb,+ = �μ f ,+ = −�μ, (39)

�μc,+ = �μi,+ = 2�μ, (40)

�μd,+ = �μ j,+ = −2�μ, (41)

�μg,+ = �μk,+ = 3�μ, (42)

�μh,+ = �μl,+ = −3�μ, (43)

with the effective chemical potential difference �μκ,+ =
μGTP

κ,+ − μGDP
κ,+ − μ

Pi
κ,+ or �μκ,+ = μATP

κ,+ − μAMP
κ,+ − μ

PPi
κ,+.

Recalling that W = �Fext is the work performed against the
external force in one translocation step, one also derives from
the description of the six cycles

Wa,+ = Wb,+ = We,+ = Wf ,+ = 0, (44)

Wd,+ = Wh,+ = Wj,+ = Wl,+ = W, (45)

Wc,+ = Wg,+ = Wi,+ = Wk,+ = −W. (46)

Thus one gets from (35)

Xa = Xe = �μ, (47)

Xb = Xf = −�μ, (48)

Xc = Xi = 2�μ − W, (49)

Xd = Xj = W − 2�μ, (50)

Xg = Xk = (3�μ) − W, (51)

Xh = Xl = W − (3�μ). (52)

Since the cycle flux and the generalized thermodynamic
force always have the same sign and must vanish simultane-
ously,

Jκ = Jκ,+(1 − e−�Qκ /kBT ) = Jκ,+(1 − e−Xκ /kBT ). (53)

The conditions that must be satisfied are shown in in Fig. 8
on the Fext − �μ plane. Combining the information displayed
in these figures, we identify the various modes of operation
of the ribosome, from (36) and (37), on the F̄ − �μ̄ plane
in terms of v and h, as shown in Fig. 9. Here, F̄ = F�

kBT and

�μ̄ = �μ

kBT are the scaled force and chemical potential.
The lines where velocity and hydrolysis rate change sign

are not accessible to this analysis. At the equilibrium point
W = 0 = �μ both v and h vanish.

2. Stall force and balanced potential

For a given concentration for [GTP],[GDP],[P], the stall
force Fs is given by the condition

v(Fext,[GTP],[GDP],[P])) = 0 for Fext = Fs. (54)

After substituting the values of the rate constants and � =
1 nm in Eq. (36), the expression for velocity in terms of �μ
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FIG. 8. The figure shows the variation of sign of cycle fluxes with the variation of the chemical potential difference �μ and the applied
force Fext. The shaded region corresponds to the conditions written on it.

FIG. 9. Modes of operation of the ribosome as function of scaled chemical potential difference �μ̄ and the scaled force F̄ . Inside the green
shaded regions (upper left) the motor velocity v and the hydrolysis rate h are positive for all values of �μ̄ and F̄ . Inside the pink shaded regions
(lower right) these quantities are negative for all values of �μ̄ and F̄ . The change of sign takes place inside the respective white regions.
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FIG. 10. Operational diagram for the ribosome. The stall force
Fs as a function of �μ is shown by the red line. The balanced
potential �μb as a function of Fext is shown by the blue line.
These lines divide the (Fext, �μ) plane into four different regions HF
(hydrolysis-forward) (blue), HB (hydrolysis-backward) (yellow), SB
(synthesis-backward) (red), and SF (synthesis-forward) (green). The
lines were computed using the transition rates given in Table I. Fext is
in units of pN and �μ is in units of pN nm

and Fext is

v = [−2.9 × 10−9(1 − e(2�μ−Fext )/kBT )

− 2.9 × 10−9(1 − e(3�μ−Fext )/kBT )

+ 3.4(1 − e(−3�μ+Fext )/kBT )

+ 5.8 × 10−9(1 − e(−2�μ+Fext )/kBT )] nm s−1. (55)

Using (54) and (55), we obtain the stall force Fs(�μ) as a
function of �μ.

Following a similar route, the zeros of the hydrolysis
rate give us the balanced concentrations of GTP, GDP, P,
i.e., which in turn gives us the balanced potential �μb. The
condition for balanced potential �μb is given by

h(Fext,[GTP],[GDP],[P])) = 0 for �μ = �μb. (56)

After substituting the values of the rate constants in
Eq. (37), the expression for hydrolysis rate in terms of �μ

and Fext is

h = [6.8 − 0.055e−(�μ/kBT ) + 3.0 × 10−9e�μ/kBT

+ 2.9 × 10−9e(2�μ−F )/kBT + 5.9 × 10−9e(3�μ−F )/kBT

− 6.8e(−3�μ+F )/kBT − 5.8 × 10−9e(−2�μ+F )/kBT ] s−1.

(57)

Using Eqs. (57) and (56), we obtain the expression for the
balanced potential �μb(Fext ) as a function of Fext.

As shown in Fig. 10, the conditions of vanishing velocity
(red line) and vanishing hydrolysis rate (blue line) divides
the (F,�μ) plane into four different regions. In operation
mode HF (blue), the ribosome couples GTP hydrolysis to
forward mechanical steps, while in the operation mode HB
(yellow), the ribosome couples GTP hydrolysis to backward
steps. In the operation mode SB (red), the ribosome couples
GTP synthesis to backward steps, while in the operation mode

SF (green), the ribosome couples GTP synthesis to forward
steps. The SF region appears only for negative external force
(corresponding to a force along the natural direction of mo-
tion) when this force is strong enough.

The two functions Fs(�μ) and �μb(F ) intersect when
there is both mechanical and chemical equilibrium, i.e.,
Fext,�μ = 0. We note that the stall force and the balanced
potential approach the straight line Fext = 3�μ as we move
closer to the chemomechanical equilibrium, i.e., Fext = �μ =
0. This represents the ideal operating curve which directly
follows from the linear response theory. Near the chemome-
chanical equilibrium, the ribosome works with 100% effi-
ciency, i.e., Fext� = 3�μ. The efficiency is given by the ratio
of the mechanical work performed by the ribosome against
the external force and the chemical energy consumption.

The validity of our prediction for GTP synthesis under
strong enough load force can be verified only after systematic
experimental studies are carried out using a setup of the type
developed by Liu et al. [46]. Can a ribosome really synthesize
GTP under the conditions described above? A similar question
on the possibility of ATP synthesis by cytoskeletal motors
under externally applied load force has been raised earlier in
the literature in the context of the modes of their operation. In
spite of some indirect indication in support, the possibility of
ATP synthesis during load-induced back stepping still remains
an open question [53]. We believe that the possibility of GTP
synthesis during load-induced backward stepping is allowed
by the principles of stochastic kinetics and thermodynamics.
However, some constraints arising from the structures of the
ribosome and the accessory proteins involved during the elon-
gation cycle may make the probability current of the process
in reality negligibly small.

B. Ribosome velocity

We study in more detail the ribosome velocity under nor-
mal operation as a function of the rates k23 and k51 for the
processes that involve GTP hydrolysis, with all other rates
kept at their experimental or hypothetical values. From the
exact expression (36) one concludes that the velocity as a
function of any two rates k, k′, with all other rates kept fixed,
is of the form

v(k, k′) = α1 + α2k + α3k′ + α4kk′

β1 + β2k + β3k′ + β4kk′ + β5k2 + β6k′2 nm s−1

(58)

with coefficients αl , βl that depend on the choice of rates
k, k′.

As a function of the rates k = k51 and k′ = k23 one obtains
from the exact stationary distribution the coefficients α1 =
1.23 × 10−8, α2 = 3.53 s, α3 = 5.87 × 10−12 s, α4 = 7.78 ×
10−2 s2 and β1 = 6.69 × 10−8, β2 = 1.31 s, β3 = 7.46 ×
10−2 s, β4 = 2.14 × 10−3 s2, β5 = 4.36 × 10−9 s2, β6 = 0.
Neglecting numerical prefactors of order 10−6 and smaller
and introducing the dimensionless unit rates k̃i j := ki j s (i.e.,
the rates expressed in units of a second) one obtains

v = 3.53k̃51 + 7.78 × 10−2k̃51k̃23

1.31k̃51 + 7.46 × 10−2k̃23 + 2.14 × 10−3k̃51k̃23
nm s−1.

(59)
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FIG. 11. Velocity v in nm s−1 as a function of the rates k51 and
k23 in s−1.

Notice that the velocity becomes a constant even when the
rates k51 and k23 become large and saturate. This saturation
effect arises because even if hydrolysis and translocation
would be instantaneous, the velocity would still be limited
by the rate of the other processes in the elongation cycle. As
seen in Fig. 11, the dependence on the rate k23 is very weak in
the experimentally relevant range around k23 = 1500 s−1 and
saturates to a value that is approximately proportional to k51

in the experimentally relevant range around k51 = 4 s−1. This
saturation effect indicates that the main limiting factor for the
velocity is the second hydrolysis in the elongation cycle.

To explore the velocity saturation due to the second GTP
hydrolysis further we consider the velocity as a function of
k = k51 and k′ = k12, the latter being the rate at which GTP
for the first hydrolysis is supplied by the ternary complex
EF-Tu.GTP.aa-tRNA. As a function of these two rates the
constants entering (58) are given by α1 = 2.1 × 10−9, α2 =
1.1 s, α3 = 0, α4 = 1.3 × 10−3 s2 and β1 = 3.9 × 10−8, β2 =
3.8 × 10−1 s, β3 = 1.3 × 10−3 s, β4 = 7.8 × 10−6 s2, β5 =
1.3 × 10−20 s2, β6 = 0, which yields the velocity plot shown
in Fig. 12. Neglecting numerical prefactors of order 10−6 and
smaller one finds

v = 1.1k̃51 + 1.3 × 10−3k̃51k̃12

1.3 × 10−3k̃12 + 0.38k̃51
nm s−1. (60)

The dependence of the velocity on the rate k12 is very weak
in the experimentally relevant range of the order 103−104. As
k12 increases (high concentration of aa-tRNA), the velocity

FIG. 12. Velocity v in nm s−1 as a function of the rates k51 and
k12 in s−1.

FIG. 13. Hydrolysis rate h in units of s−1 plotted against the rates
k23 and k51 in units of s−1.

becomes limited by the rate k51 which is not affected by a
high concentration of aa-tRNA.

C. Hydrolysis rate

The transitions 2 → 3 and 5 → 1 involve GTP hydrolysis.
Therefore, from Eq. (37), we get the expression

h = α̃1 + α̃2k23 + α̃3k51 + α̃4k23k51

β̃1 + β̃2k23 + β̃3k51 + β̃4k23k51 + β̃5k2
51

s−1 (61)

for the rate of GTP hydrolysis as a function of the rates
k23 and k51, where the coefficients αl , βl , just like in the
case of the velocity, depend on the choice of the rates.
For k = k23, k′ = k51 one obtains the coefficients α̃1 = 2.6 ×
10−8, α̃2 = 9.8 × 10−11 s, α̃3 = 7.5 s, α̃4 = 1.6 × 10−1 s2,
β̃1 = 1.3 × 10−7, β̃2 = 7.4 × 10−2 s, β̃3 = 1.3 s, β̃4 = 2.1 ×
10−3 s2, β̃5 = 2.2 × 10−9 s2. As a function of k51, there is
little variation in the rate for k23 > 1500 s−1, which is in the
experimental relevant range k23 ≈ 1500 s−1, thus indicating
robustness of hydrolysis with respect to this rate. On the other
hand, in the region of the experimental value k51 ≈ 4 s−1 for
the transition 5 → 1 (where hydrolysis is accompanied by
translocation), the hydrolysis rate depends strongly on k51.
The rate of hydrolysis under normal operation is shown in
Fig. 13.

D. Entropy production

In order to determine how the entropy change �Sκ,± :=
±�Sκ associated with the completion of an oriented cycle
(κ,±) contributes to the total entropy production of the
process we recall that the entropy of a system described by
Markovian stochastic dynamics is the usual Gibbs entropy,

Ssys(t ) = −kB

∑
i

Pi(t ) ln[Pi(t )]. (62)

Following Schnakenberg [40] we split the time evolution of
the system entropy into two parts,

d

dt
Ssys(t ) = σ tot(t ) + σ env(t ), (63)

with the total entropy production

σ tot(t ) := 1

2
kB

∑
i j

Ji j (t ) ln

(
Pi(t )ki j

Pj (t )k ji

)
(64)
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(a)

(b)

(c)

FIG. 14. Entropy production rate σ tot in units of seconds plotted
against (a) the concentration of the cognate ternary complex EF-
Tu.GTP.aa-tRNA (in units of μmol which is proportional to the rate
k12), (b) the rate k23 of the transition 2 → 3 that involves hydrolysis
of GTP, (c) the rate k51 of the transition 5 → 1 that is associated
with translocation. The remaining rates are kept at their experimental
values.

and the entropy flux

σ env(t ) := −1

2
kB

∑
i j

Ji j (t ) ln

(
ki j

k ji

)
. (65)

The entropy flux can be interpreted as the entropy production
of the environment [44,54]. Using the master equation (5) it
is straightforwardly verified that the time derivatives satisfy
Ṡ(t ) = σ tot(t ) + σ env(t ).

In the steady state, the system entropy does not change
which implies

σ tot = −1

2
kB

∑
i j

Ji j ln

(
ki j

k ji

)
= −σ env. (66)

In terms of cycle fluxes with the entropy change

�Sκ,± = kB ln
�κ,±
�κ,∓

(67)

along a circle in clockwise or anticlockwise direction one gets
the decomposition

σ tot =
∑

κ

(Jκ,+�Sκ,+ + Jκ,−�Sκ,−) (68)

of the entropy production in terms of cycles (see Appendix D
for detailed derivation). Using �Sκ,− = −�Sκ,+, which indi-
cates that the cycle (κ,+) is the time reversed trajectory of
the cycle (κ,−), we arrive at the entropy production

σ tot
κ = Jκ�Sκ (69)

for cycle κ and at

σ tot =
∑

κ

σ tot
κ (70)

for the total entropy production. From Table III it is readily
seen that cycle (b) has the overwhelmingly largest contribu-
tion to the total entropy production, followed by cycle (c) and
then cycle (a).

As k12 is proportional to the concentration of cognate EF-
Tu.GTP.aa-tRNA, the increase of k12 is easily implemented by
the increase of the concentration of cognate EF-Tu.GTP.aa-
tRNA. Figure 14(a) shows how the entropy production in-
creases with the increase of the concentration of the cognate
ternary complex EF-Tu.GTP.aa-tRNA. We find that the effect
is particularly pronounced at small concentration and gradu-
ally flattens out somewhat at higher concentration where the
entropy production diverges logarithmically with the further
increase of the EF-Tu.GTP.aa-tRNA concentration. A similar
trend of variation of the entropy production is observed also
in the variation of, for example k23 [see Fig. 14(b)] as well as
with the variation of k51 [Fig. 14(c)]. Note that k23 is the rate
of a step that involves the hydrolysis of a molecule of GTP
whereas k51 is associated with translocation.

In order to understand the causes and consequences of this
common trend of variation of the entropy production with
the rates of interstate transitions, it is instructive to consider
also the behavior of the entropy production as a function
of the ribosome velocity. As k12 increases (i.e., effectively
concentration of cognate EF-Tu.GTP.aa-tRNA increases), the
velocity v(k12) (60) of the ribosome, expressed as a function
of k12, saturates to a value v∗ = 3.7 nm s−1 as discussed above
since in that parameter regime it is limited by the rates along
the cycles that involve translocation (see Fig. 15). These
rates are not affected by a high concentration of cognate
EF-Tu.GTP.aa-tRNA. On the other hand, the contribution
to the entropy production from the cycles (a)–(c)—which
involve the ratio ln (k12/k21) from the reaction 1 � 2—keeps
increasing and diverges at v∗ since the inverse function k12(v)
diverges at v∗. A similar divergence appears when any of the
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FIG. 15. The entropy production rate (P) per second plotted
against the velocity of translation v in nm/s, obtained by varying
the rate k12 from 0 to 150 000 s−1.

transition rates ki j becomes large since the entropy production
diverges as ln (ki j ) while the the velocity saturates for large ki j

[see Figs. 14(b) and 14(c)].

E. Accuracy of translation and its thermodynamic cost

As pointed out earlier, proofreading and hence rejection of
non- or near-cognate aa-tRNA or mischarged aa-tRNA, may
be faulty, leading to a transition 7 → 8, 11 → 12, and 15 →
16. Unless the reverse transitions 8 → 7, 12 → 11, and 16 →
15 take place before elongation and translocation, this process
leads to a production of missense error in polypeptide chains
with a total net production rate

e6 = J78 + J11,12 + J15,16. (71)

On the other hand, by a similar argument, correct production
occurs with a rate

e4 = J34. (72)

Thus the accuracy of translation, defined by [20]

φ := e4

e4 + e6
= Jc + Jg

Jc + Jg − Jd − Jh + Ji + Jk − Jl − Jj
,

(73)

yields the fraction of proper polypeptide chains in the total
production of the ribosome.

FIG. 16. Entropy production rate σ tot is plotted against accuracy
of translation φ by varying the rate k23 from 0 to 30 000 s−1.

FIG. 17. Accuracy of translation φ plotted against (a) the con-
centration of the cognate ternary complex binding rate k12 and
mischarged ternary complex binding rate k16, (b) the concentration
of the cognate ternary complex binding rate k12 and near-cognate
ternary complex binding rate k1,10. The remaining rates are kept at
their experimental values.

In Fig. 16, total entropy production rate σ tot is plotted
against accuracy of translation. The plot shows that as we
increase the accuracy of translation, the energetic cost of
translation also increases.

In Fig. 17, we observe how the accuracy of translation
varies with the variation in concentration of cognate and
mischarged ternary complexes, Fig. 17(a), and with the vari-
ation of concentration of cognate and near-cognate ternary
complexes, Fig. 17(b). This gives us insight of the competition
between different types of ternary complexes. We see that the
accuracy varies considerably with the variation in concentra-
tion of cognate and mischarged because the mischarged tRNA
escapes the proofreading as it has the correct codon-anticodon
base pairing. Therefore, if we increase the concentration of
mischarged aa-tRNA in the surrounding, it may considerably
affect the accuracy of translation. For Fig. 17(b), the accuracy
is almost insensitive to the near-cognate tRNA concentration.
This is because the ribosome ensures rejection of near-cognate
tRNA through stringent proofreading.

In Fig. 18, we show the variation of accuracy of translation
φ with the cognate cycle peptide bond formation rate k34 and
mischarged cycle peptide bond formation rate k78 [Fig. 18(a)]
and the cognate cycle peptide bond formation rate k34 and mis-
charged cycle peptide bond formation rate k11,12 in Fig. 18(b).
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FIG. 18. Accuracy of translation φ plotted against (a) the cognate
cycle peptide bond formation rate k34 and mischarged cycle peptide
bond formation rate k78, (b) the cognate cycle peptide bond formation
rate k34 and mischarged cycle peptide bond formation rate k11,12. The
remaining rates are kept at their experimental values.

V. CONCLUSIONS

The ribosome is one of the largest multicomponent molec-
ular machines. It performs a crucially important biological
function called translation (of genetic code) that results in
the synthesis of proteins as directed by a mRNA template.
Although the structure and kinetics of ribosomes have been
studied extensively in the past, the stochastic thermodynamics
has not received attention so far. Most of the results reported
in this paper constitute, to our knowledge, essentially the first
step in that direction.

Using a network approach we solved exactly the stationary
master equation for a seven-states model of the kinetics of
a ribosome during the elongation stage of translation. This
solution is used for a detailed description of stationary prop-
erties arising from the stochasticity of the chemomechanical
cycle of the ribosome. We have identified the various modes
of operation of this machine in terms of its average velocity
and the mean rate of GTP hydrolysis. Similar analyses have
been reported earlier in the literature for cytoskeletal motor
proteins. This paper reports an analysis from the perspective
of stochastic thermodynamics, of a molecular machine that
carries out template-directed polymerization.

Our quantitative predictions can be used as benchmarks for
simpler models and thus allow for judging the adequacy of
such reduced models that incorporate fewer or other internal
states of the ribosome. Moreover, since we used rates obtained

from experiments, the comparison of the analytical results
with other experimental data allows for a detailed quantita-
tive understanding of the microscopic processes underlying
translation, particularly those during the elongation stage.

Finally, we would like to point out that the knowledge
of exact stationary distribution allows for the construction of
exactly solvable models of many interacting ribosomes, as
has been demonstrated recently in a mathematically similar
setting for a two-states description of transcription elongation
by RNA polymerase [36,55]. This approach can be adapted to
more internal states and exact stationary single-motor results
open up the path to obtaining exact quantitative results for
the elongation kinetics of many simultaneously transcribing
or translating molecular motors.
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APPENDIX A: MASTER EQUATIONS

The full master equation for the probability to find the
ribosome at time t in the chemical state i at codon nm (see
Fig. 19) reads

d

dt
P1(nm, t ) = k21P2(nm, t ) − k12P1(nm, t )

+ k31P3(nm, t ) − k13P1(nm, t )

+ k51P5(nm − 1, t ) − k15P1(nm, t )

+ k91P9(nm − 1, t ) − k19P1(nm, t )

+ k71P7(nm, t ) − k17P1(nm, t )

+ k61P6(nm, t ) − k16P1(nm, t )

+ k101P10(nm, t ) − k110P1(nm, t )

+ k111P11(nm, t ) − k111P1(nm, t )

+ k131P13(nm − 1, t ) − k113P1(nm, t )

+ k171P17(nm − 1, t ) − k117P1(nm, t )

+ k151P15(nm, t ) − k115P1(nm, t )

+ k141P14(nm, t ) − k114P1(nm, t ), (A1)

d

dt
P2(nm, t ) = k12P1(nm, t ) − k21P2(nm, t )

+ k32P3(nm, t ) − k23P2(nm, t ), (A2)
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FIG. 19. The kinetic Markov network of the ribosomal elonga-
tion cycle. At every codon position, the ribosome undergoes different
conformation changes that are labeled by i = 1, 2, 3, 4, 5, 6, 7. The
ki j are the transition rates to move from conformation i to conforma-
tion j. Notice that there are multiple pathways that the ribosome can
follow.

d

dt
P3(nm, t ) = k13P1(nm, t ) − k31P3(nm, t ) + k23P2(nm, t )

− k32P3(nm, t ) + k43P4(nm, t ) − k34P3(nm, t ),

(A3)
d

dt
P4(k, t ) = k34P3(nm, t ) − k43P4(nm, t )

+ k54P5(nm, t ) − k45P4(nm, t ), (A4)

d

dt
P5(nm, t ) = k15P1(nm + 1, t ) − k51P5(nm, t )

+ k45P4(nm, t ) − k54P5(nm, t ), (A5)

d

dt
P6(nm, t ) = k16P1(nm, t ) − k61P6(nm, t )

+ k76P7(nm, t ) − k67P6(nm, t ), (A6)

d

dt
P7(nm, t ) = k17P1(nm, t ) − k71P7(nm, t )

+ k67P6(nm, t ) − k76P7(nm, t )

+ k87P8(nm, t ) − k78P7(nm, t ), (A7)

d

dt
P8(nm, t ) = k78P7(nm, t ) − k87P8(nm, t )

+ k98P9(nm, t ) − k89P8(nm, t ), (A8)

d

dt
P9(nm, t ) = k19P1(nm + 1, t ) − k91P9(nm, t )

+ k89P8(nm, t ) − k98P9(nm, t ), (A9)

d

dt
P10(nm, t ) = k110P1(nm, t ) − k101P10(nm, t )

+ k1110P11(nm, t ) − k1011P10(nm, t ), (A10)

d

dt
P11(nm, t ) = k111P1(nm, t ) − k111P11(nm, t )

+ k1011P10(nm, t ) − k1110P11(nm, t )

+k1211P12(nm, t ) − k1112P11(nm, t ), (A11)

d

dt
P12(nm, t ) = k1112P11(nm, t ) − k1211P12(nm, t )

+ k1312P13(nm, t ) − k1213P12(nm, t ), (A12)

d

dt
P13(nm, t ) = k1213P12(nm, t ) − k1312P13(nm, t )

+ k113P1(nm + 1, t ) − k131P13(nm, t ),

(A13)

d

dt
P14(nm, t ) = k114P1(nm, t ) − k141P14(nm, t )

+ k1514P15(nm, t ) − k1415P14(nm, t ),

(A14)

d

dt
P15(nm, t ) = k1415P14(nm, t ) − k1514P15(nm, t ), (A15)

d

dt
P16(nm, t ) = k1516P15(nm, t ) − k1615P16(nm, t )

+k1716P17(nm, t ) − k1617P16(nm, t ),

(A16)

d

dt
P17(nm, t ) = k1617P16(nm, t ) − k1716P17(nm, t )

+k117P1(nm + 1, t ) − k171P17(nm, t ).

(A17)

The normalization condition is

17∑
i=1

∑
nm

Pi(nm, t ) = 1. (A18)

APPENDIX B: GRAPH THEORETIC SOLUTION
OF MASTER EQUATIONS

In order to find the stationary solution of the master equa-
tion (5) we follow [40]. We demonstrate the solution explicitly
for a simplified effective version of the model with only
seven states. The solution of the full model proceeds along
completely analogous lines.

1. Step 1: Constructing graph and undirected graph

From the graph an undirected graph is obtained by
replacing the directed edges by undirected edges. The
undirected graph for the seven-state model is displayed
in Fig. 20. This graph is fully determined by the
vertex set V = {1, 2, 3, 4, 5, 6, 7} and the edge set E =
{(1, 2),(1, 3),(1, 5),(1, 7),(2, 3), (3, 4), (3, 6), (4, 5), (6, 7)}.
Here the edges are not directed, i.e., edge (i, j) is the same as
the edge ( j, i), as opposed to oriented edges 
(i, j) displayed
below by an arrow pointing from i to j.
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FIG. 20. Undirected graph representation of the network of seven
states.

2. Step 2: Constructing undirected spanning trees
from the undirected graph

Recall that a spanning tree of an undirected graph is a
subgraph which is a maximal tree that includes all the vertices
of the graph, with minimum possible edges. All possible
spanning trees of graph G have the same number of edges and
vertices. It doesn’t contain any cycle. Adding just one edge
will create a cycle and removing one edge will make the graph
disconnected. Let T μ(G) (μ = 1, 2, . . . , M) represent the μth
undirected spanning tree of graph G.

One can construct the spanning trees by removing |E | −
|V | + 1 edges (for our graph, 9 − 7 + 1 = 3 edges) from the
graph, where |E | is the number of edges and |V | is the number
of vertices. This yields M = 39 distinct undirected spanning
trees. For a systematic construction we group the spanning
trees into three classes: (I) all spanning trees without edge
(1,2), (II) all spanning trees that have edge (1,2) but not edge
(1,3), and (III) all spanning trees that have edge (1,2) and edge
(1,3) but not edge (2,3). In total there are 39 spanning trees;
see Figs. 21–23.

3. Step 3: Constructing directed spanning trees
from undirected spanning trees

Recall that a directed spanning tree T μ
i (G) can be ob-

tained by directing all the edges of the undirected spanning
tree T μ(G) towards the vertex i. Thus, for each undirected
spanning tree T μ displayed in Figs. 21–23, the six directed
spanning trees T μ

i , i ∈ {1, . . . , 7}, are obtained by directing
all the edges of T μ towards the vertex i. This construction
is illustrated in Fig. 24 for the undirected spanning tree T 9.
Since, for every undirected spanning tree T μ(G) and for a
particular root vertex i, there is exactly one directed spanning
tree, this construction yields a total of 7 × 39 = 273 directed
spanning trees T μ

i (μ = 1, 2, . . . , 7).

4. Step 4: Steady-state solution in terms of contributions
from directed spanning trees

To each of the directed spanning trees T μ
i , we assign a

numerical value, A(T μ
i ), which is defined as the product of the

|V | − 1 = 6 transition rates in the tree, with transitions i → j
defined along the orientation 
(i, j). The steady state probabil-
ity distributions are then given by (6) with the normalization
factor (7).

As a result of this construction, all unnormalized steady
state probabilities P̃i = ∑M

μ=1 A(T μ
i ) for the seven-state

model are a sum of 39 monomials. Each monomial is a
product of seven rates ki j such that each edge (i, j) is rep-
resented exactly once. The monomials thus differ only in
the orientation in which an edge appears. So, finally, for the
seven-state model one finds

Pi = P̃i/Z, (B1)

with

Z =
7∑

i=1

P̃i, (B2)

where

P̃1 = k21k31k43k51k71k67 + k21k31k51k45k71k67

+ k31k23k51k45k71k67 + k31k23k43k51k71k67

+ k51k45k34k23k71k67 + k21k32k43k51k71k67

+ k51k71k67k36k23k43 + k51k45k71k67k36k23

+ k21k32k51k45k71k67 + k21k51k45k34k71k67

+ k21k51k45k71k67k36 + k21k51k71k67k36k43

+ k21k71k67k36k43k54 + k21k31k43k54k71k67

+ k21k32k43k54k71k67 + k31k23k43k54k71k67

+ k71k67k36k23k43k54 + k21k32k43k54k63k76

+ k51k45k34k23k63k76 + k31k23k43k54k63k76

+ k21k31k43k54k63k76 + k21k51k45k34k63k76

+ k21k32k43k63k76k51 + k21k31k43k63k76k51

+ k31k23k43k63k76k51 + k31k23k63k76k51k45

+ k21k31k63k76k51k45 + k21k32k63k76k51k45

+ k21k32k63k51k45k71 + k21k51k45k34k63k71

+ k21k31k63k51k45k71 + k31k23k63k51k45k71

+ k51k45k34k23k63k71 + k21k32k43k63k51k71

+ k31k23k43k63k51k71 + k21k31k43k63k51k71

+ k21k31k43k54k63k71 + k31k23k43k54k63k71

+ k21k32k43k54k63k71, (B3)

P̃2 = k12k31k43k51k71k67 + k12k31k51k45k71k67

+ k32k13k51k45k71k67 + k32k13k51k71k67k43

+ k32k43k54k15k71k67 + k12k51k71k67k32k43

+ k32k43k63k76k17k51 + k32k63k76k17k51k45

+ k12k51k45k71k67k32 + k12k51k45k34k71k67

+ k12k51k45k71k67k36 + k12k51k71k67k36k43

+ k12k71k67k36k43k54 + k12k31k43k54k71k67

+ k12k71k67k32k43k54 + k32k13k71k67k43k54

032402-19



DUTTA, SCHÜTZ, AND CHOWDHURY PHYSICAL REVIEW E 101, 032402 (2020)

13

13

2

4 5

6 7

13

2

4 5

6 7

13

2

4 5

6 7

13

2

4 5

6 7

13

2

4 5

6 7

13

2

4 5

6 7

13

2

4 5

6 7

13

2

4 5

6 7

13

2

4 5

6 7

2 2 2

13

4 5

6 7

13

4 5

6 7

13

4 5

6 7

13

4 5

6 7

13

4 5

6 7

13

4 5

6 7

2 2 2

T

TTT

TT

TTT

T TT

TTT

321

654

987

211101

5141

FIG. 21. All spanning trees T μ without edge (1,2).

+ k32k43k54k63k76k17 + k12k32k43k54k63k76

+ k32k43k54k15k63k76 + k32k13k43k54k63k76

+ k12k31k43k54k63k76 + k12k51k45k34k63k76

+ k12k51k32k43k63k76 + k12k31k43k63k76k51

+ k32k13k51k43k63k76 + k32k13k51k45k63k76

+ k12k31k63k76k51k45 + k12k51k45k32k63k76

+ k12k51k45k71k32k63 + k12k51k45k34k63k71

+ k12k31k63k51k45k71 + k32k13k51k45k71k63

+ k32k43k54k15k71k63 + k12k51k71k32k43k63

+ k32k13k51k71k43k63 + k12k31k43k63k51k71

+ k12k31k43k54k63k71 + k32k13k71k43k54k63

+ k21k32k43k54k63k71, (B4)
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FIG. 22. All spanning trees T μ that have edge (1,2) but not edge (1,3).

P̃3 = k13k21k51k71k67k43 + k13k21k51k45k71k67

+ k13k51k45k71k67k23 + k13k51k71k67k23k43

+ k23k43k54k15k71k67 + k23k12k51k71k67k43

+ k23k43k63k76k17k51 + k23k63k76k17k51k45

+ k23k12k51k45k71k67 + k43k54k15k21k71k67

+ k63k76k17k21k51k45 + k43k63k76k17k21k51

+ k43k54k63k76k17k21 + k13k21k71k67k43k54

+ k23k12k71k67k43k54 + k13k71k67k23k43k54

+ k23k43k54k63k76k17 + k23k12k43k54k63k76

+ k23k43k54k15k63k76 + k13k23k43k54k63k76

+ k13k21k43k54k63k76 + k43k54k15k21k63k76

+ k23k12k51k43k63k76 + k13k21k51k43k63k76

+ k13k51k23k43k63k76 + k13k51k45k23k63k76
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FIG. 23. All spanning trees T μ that have edge (1,2) and edge (1,3) but not edge (2,3).
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FIG. 24. All the seven directed spanning trees T 9
i , obtained from the undirected spanning tree T 9 of Fig. 21 by directing all the edges

towards the root vertex i.
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T T33 33
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(c)

T

FIG. 25. Forming graphs with a single cycle: (a) Adding to the oriented tree T 9
4 an oriented edge from vertex 4 to the neighboring vertex

5 yields the same tree (without any cycle) as adding to the oriented tree T 9
5 an oriented edge from vertex 5 to vertex 4, thus rendering

J9
45 = J9

54 = 0. (b) Adding to the directed tree T 9
1 an oriented edge from vertex 1 to vertex 2 generates a cycle (231), while adding to the oriented

tree T 9
2 an oriented edge from vertex 2 to vertex 1 generates a cycle (132) where generically J9

12 = −J9
21 �= 0 (viz. unless k12k23k31 = k21k13k32

for the cycle products of the transition rates). (c) Adding oriented edges between vertices 2 and 3 of the oriented trees T 33
2 and T 33

3 respectively,
yields identical graphs so that J9

12 = J33
23 .

+ k13k21k51k45k63k76 + k23k12k51k45k63k76

+ k23k12k51k45k71k63 + k43k54k15k21k71k63

+ k13k21k51k45k71k63 + k13k51k45k71k23k63

+ k23k43k54k15k71k63 + k23k12k51k71k43k63

+ k13k51k71k23k43k63 + k13k21k51k71k43k63

+ k13k21k71k43k54k63 + k13k71k23k43k54k63

+ k23k12k71k43k54k63, (B5)

P̃4 = k34k13k21k51k71k67 + k54k15k21k31k71k67

+ k54k15k31k23k71k67 + k34k13k51k71k67k23

+ k34k23k54k15k71k67 + k34k23k12k51k71k67

+ k34k23k63k76k17k51 + k54k15k71k67k36k23

+ k54k15k21k32k71k67 + k34k54k15k21k71k67

+ k54k15k21k71k67k36 + k34k63k76k17k21k51
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FIG. 26. Graphs with loop (a).

+ k34k63k76k17k21k54 + k34k13k21k71k67k54

+ k34k23k12k71k67k54 + k34k13k71k67k23k54

+ k34k23k63k76k17k54 + k34k23k12k63k76k54

+ k34k23k63k76k54k15 + k34k13k23k63k76k54

+ k34k13k21k63k76k54 + k34k63k76k54k15k21

+ k34k23k12k51k63k76 + k34k13k21k51k63k76

+ k34k13k51k23k63k76 + k54k15k31k23k63k76

+ k54k15k21k31k63k76 + k54k15k21k32k63k76

+ k54k15k21k32k63k71 + k34k63k54k15k21k71

+ k54k15k21k31k63k71 + k54k15k31k23k63k71

+ k34k23k63k54k15k71 + k34k23k12k51k71k63

+ k34k13k51k71k23k63 + k34k13k21k51k71k63

+ k34k13k21k71k63k54 + k34k13k71k23k63k54

+ k34k23k12k71k63k54, (B6)

P̃5 = k15k21k31k43k71k67 + k15k21k31k71k67k45

+ k15k31k23k71k67k45 + k15k31k23k43k71k67

+ k15k71k67k45k34k23 + k15k21k32k43k71k67

+ k15k71k67k36k23k43 + k15k71k67k36k23k45

+ k15k21k32k71k67k45 + k15k21k71k67k45k34

+ k15k21k71k67k36k45 + k15k21k71k67k36k43

+ k45k34k63k76k17k21 + k45k34k13k21k71k67

+ k45k34k23k12k71k67 + k45k34k13k71k67k23

+ k45k34k23k63k76k17 + k45k34k23k12k63k76

+ k15k45k34k23k63k76 + k45k34k13k23k63k76

7

13

2

4 5

6 7

13

2

4 5

6 7

13

2

4 5

6

FIG. 27. Graphs with loop (b).
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FIG. 28. Graphs with loop (c).

+ k45k34k13k21k63k76 + k15k21k45k34k63k76

+ k15k21k32k43k63k76 + k15k21k31k43k63k76

+ k15k31k23k43k63k76 + k15k31k23k63k76k45

+ k15k21k31k63k76k45 + k15k21k32k63k76k45

+ k15k21k32k63k71k45 + k15k21k71k45k34k63

+ k15k21k31k63k71k45 + k15k31k23k63k71k45

+ k15k71k45k34k23k63 + k15k21k32k43k63k71

+ k15k31k23k43k63k71 + k15k21k31k43k63k71

+ k45k34k13k21k71k63 + k45k34k13k71k23k63

+ k45k34k23k12k71k63, (B7)

P̃6 = k76k17k21k31k43k51 + k76k17k21k31k51k45

+ k76k17k31k23k51k45 + k76k17k31k23k43k51

+ k76k17k51k45k34k23 + k76k17k21k32k43k51

+ k36k23k43k76k17k51 + k36k23k76k17k51k45

+ k76k17k21k32k51k45 + k76k17k21k51k45k34

+ k36k76k17k21k51k45 + k36k43k76k17k21k51

+ k36k43k54k76k17k21 + k76k17k21k31k43k54

+ k76k17k21k32k43k54 + k76k17k31k23k43k54

+ k36k23k43k54k76k17 + k36k23k12k43k54k76

+ k36k23k43k54k15k76 + k36k13k23k43k54k76

+ k36k13k21k43k54k76 + k36k43k54k15k21k76

+ k36k23k12k51k43k76 + k36k13k21k51k43k76

+ k36k13k51k23k43k76 + k36k13k51k45k23k76

+ k36k13k21k51k45k76 + k36k23k12k51k45k76

+ k36k23k12k51k45k71 + k36k43k54k15k21k71

+ k36k13k21k51k45k71 + k36k13k51k45k71k23

+ k36k23k43k54k15k71 + k36k23k12k51k71k43

+ k36k13k51k71k23k43 + k36k13k21k51k71k43

+ k36k13k21k71k43k54 + k36k13k71k23k43k54

+ k36k23k12k71k43k54, (B8)

P̃7 = k17k21k31k43k51k67 + k17k21k31k51k45k67

+ k17k31k23k51k45k67 + k17k31k23k43k51k67

+ k17k51k45k34k23k67 + k17k21k32k43k51k67

+ k17k51k67k36k23k43 + k17k51k45k67k36k23

+ k17k21k32k51k45k67 + k17k21k51k45k34k67

+ k17k21k51k45k67k36 + k17k21k51k67k36k43

+ k17k21k67k36k43k54 + k17k21k31k43k54k67

+ k17k21k32k43k54k67 + k17k31k23k43k54k67

+ k17k67k36k23k43k54 + k67k36k23k12k43k54

+ k67k36k23k43k54k15 + k67k36k13k23k43k54

+ k67k36k13k21k43k54 + k67k36k43k54k15k21

+ k67k36k23k12k51k43 + k67k36k13k21k51k43

+ k67k36k13k51k23k43 + k67k36k13k51k45k23

+ k67k36k13k21k51k45 + k67k36k23k12k51k45

+ k17k21k32k63k51k45 + k17k21k51k45k34k63

+ k17k21k31k63k51k45 + k17k31k23k63k51k45

+ k17k51k45k34k23k63 + k17k21k32k43k63k51

+ k17k31k23k43k63k51 + k17k21k31k43k63k51

+ k17k21k31k43k54k63 + k17k31k23k43k54k63

+ k17k21k32k43k54k63. (B9)

From these exact expressions all stationary properties can be
computed analytically or numerically exactly.

APPENDIX C: GRAPHICAL REPRESENTATIONS OF
TRANSITION AND CYCLE FLUXES: FLUX DIAGRAMS

Using the decomposition (6) of the stationary probabilities
into contributions from the directed spanning trees one obtains
the decomposition

Ji j = ki jPi − k jiPj

= Z−1
39∑

μ=1

[
ki jA

(
T μ

i

) − k jiA
(
T μ

j

)]
(C1)

in terms of the unnormalized transition flux contributions
Jμ

i j := ki jA(T μ
i ) − k jiA(T μ

j ) and the normalization factor
(B2).

We observe that the directed trees T μ
i and T μ

j differ for the
same μ only in the orientation of the edges connecting the
vertices i and j. Therefore, if vertices i and j are neighbors,
i.e., if they are connected by an edge in the undirected
spanning tree μ, then the flux contribution Jμ

i j from T μ
i and

T μ
j vanishes see Fig. 25(a). On the other hand, if i and j are
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FIG. 29. Graphs with loop (d).

not neighbors, then the multiplication of A(T μ
i ) by the rate

ki j yields a product of rates that can be obtained from a new
directed graph by adding to T μ

i an oriented edge from i to j,
thus converting the oriented tree T μ

i into a graph T μ
i j with a

single oriented cycle [see Fig. 25(b)] whose original arrows
are all directed towards vertex i and with a new arrow from i
to j. Similarly, the product k jiA(T μ

ji ) corresponds to a graph
T μ

ji with the same cycle, but oriented in the opposite direction.
The rest of both the one-cycle graphs (the side branches of the
cycles) are identical, so that the product of the rates in the side
branches R(T μ

i j ) = R(T μ
ji ) is the same for both orientations.

Notice that directed trees with different indices μ might lead
to the same one-cycle graphs; see Fig. 25(c) for two examples
T 9

12 = T 33
23 and T 9

21 = T 33
32 .

From the undirected spanning trees one can construct the
flux diagrams, each of which has a single undirected cycle and

directed branches that feed into this cycle. In total, there are
29 distinct flux diagrams for the seven-state model; all these
29 graphs are displayed in Figs. 26–31.

Using these flux diagrams, the exact expressions we obtain
are the contribution of the branches for every cycle:

Ra = k43k67k71k51 + k43k76k63k51 + k54k43k76k63

+ k45k51k67k71 + k54k43k67k71 + k45k51k76k63

+ k45k51k63k71 + k54k43k63k71 + k43k63k51k71, (C2)

Rb = k67k71 + k76k63 + k63k71, (C3)

Rc = k43k51 + k45k51 + k54k43, (C4)

Rd = k43k51k21 + k43k51k23 + k54k43k21 + k54k43k23

+ k45k51k21 + k45k51k23, (C5)
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FIG. 30. Graphs with loop (e).
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FIG. 31. Graphs with loop (f).

Re = k67k71k21 + k67k71k23 + k76k63k23 + k76k63k21

+ k63k71k21 + k63k71k23, (C6)

R f = k23 + k21. (C7)

APPENDIX D: ENTROPY PRODUCTION RATE
IN TERMS OF CYCLE FLUX

The explicit derivation of the Eq. (68) is given below:

σ st
pr = 1

2
kB

∑
i j

Ji j ln

(
ki j

k ji

)

= 1

2
kB

[
J12ln

(
k12

k21

)
+ J23ln

(
k23

k32

)
+ J31ln

(
k31

k31

)

+ J21ln

(
k21

k12

)
+ J32ln

(
k32

k23

)
+ J13ln

(
k13

k31

)
+ · · ·

]

= 1

2
kB

[
(Ja + Jc + Jd )ln

(
k12

k21

)
+ (Ja + Jc + Jd )ln

(
k23

k32

)

+ (Ja − Jd − Je)ln

(
k31

k31

)

+ (−Ja − Jc − Jd )ln

(
k21

k12

)
+ (−Ja − Jc − Jd )ln

(
k32

k23

)

+ (−Ja + Jd + Je)ln

(
k13

k31

)
+ · · ·

]

[using Eqs. (28)–(31)]

= 1

2
kB

[
Jaln

(
k12k23k31

k21k32k13

)
− Jaln

(
k21k32k13

k12k23k31

)
+ · · ·

]

= 1

2
kB

[
Jaln

(
�a,+
�a,−

)
− Jaln

(
�a,−
�a,+

)
+ · · ·

]

[using Eq. (23)]

= 1

2

[
JakBln

(
�a,+
�a,−

)
− JakBln

(
�a,−
�a,+

)
+ · · ·

]

= 1

2
[Ja�Sa,+ − Ja�Sa,− + · · · ]

= 1

2
[(Ja,+ − Ja,−)�Sa,+

− (Ja,+ − Ja,−)�Sa,− + · · · ] [using Eq. (23)]

= 1

2
[Ja,+�Sa,+ − Ja,−�Sa,+ − Ja,+�Sa,−

+ Ja,−�Sa,− + · · · ]

= 1

2
[Ja,+�Sa,+ + Ja,−�Sa,− + Ja,+�Sa,+

+ Ja,−�Sa,− + · · · ] (using�Sκ,− = −�Sκ,+)

= [Ja,+�Sa,+ + Ja,−�Sa,− + · · · ]

=
∑

κ

(Jκ,+�Sκ,+ + Jκ,−�Sκ,−). (D1)
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