000874556 001__ 874556
000874556 005__ 20240610121106.0
000874556 0247_ $$2doi$$a10.1021/acs.nanolett.9b04788
000874556 0247_ $$2ISSN$$a1530-6984
000874556 0247_ $$2ISSN$$a1530-6992
000874556 0247_ $$2Handle$$a2128/25326
000874556 0247_ $$2altmetric$$aaltmetric:79970236
000874556 0247_ $$2pmid$$apmid:32046489
000874556 0247_ $$2WOS$$aWOS:000526408800025
000874556 037__ $$aFZJ-2020-01510
000874556 082__ $$a660
000874556 1001_ $$0P:(DE-Juel1)165750$$aYu, Qingfen$$b0
000874556 245__ $$aOsmotic Concentration-Controlled Particle Uptake and Wrapping-Induced Lysis of Cells and Vesicles
000874556 260__ $$aWashington, DC$$bACS Publ.$$c2020
000874556 3367_ $$2DRIVER$$aarticle
000874556 3367_ $$2DataCite$$aOutput Types/Journal article
000874556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1595395157_1261
000874556 3367_ $$2BibTeX$$aARTICLE
000874556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874556 3367_ $$00$$2EndNote$$aJournal Article
000874556 520__ $$aIn vivo, high protein and ion concentrations determine the preferred volumes of cells, organelles, and vesicles. Deformations of their lipid-bilayer membranes by nanoparticle wrapping reduce the interior volumes available to solutes and thus induce large osmotic pressure differences. Osmotic concentration can therefore be an important control parameter for wrapping of nanoparticles. We employ a curvature-elasticity model of the membrane and contact interaction with spherical particles to study their wrapping at initially spherical vesicles. Although the continuous particle-binding transition is independent of the presence of solutes, the discontinuous envelopment transition shifts to higher adhesion strengths and the corresponding energy barrier increases with increasing osmotic concentration. High osmotic concentrations stabilize partial-wrapped, membrane-bound states for both, particle attachment to the inside and the outside. In this regime, wrapping of particles controls membrane tension, with power-law dependencies on osmotic concentration and adhesion strength. For high adhesion strengths, particle wrapping can lead to the opening of mechanosensitive channels in cell membranes and to lysis. Membrane tension-induced stabilization of partial-wrapped states as well as wrapping-induced lysis play important roles not only for desired mechano-bacteriocidal effects of engineered nanomaterials but may also determine viral burst sizes of bacteria and control endocytosis for mammalian cells.
000874556 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000874556 588__ $$aDataset connected to CrossRef
000874556 7001_ $$0P:(DE-Juel1)142341$$aDasgupta, Sabyasachi$$b1
000874556 7001_ $$0P:(DE-Juel1)130514$$aAuth, Thorsten$$b2$$eCorresponding author
000874556 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b3$$eCorresponding author
000874556 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.9b04788$$gVol. 20, no. 3, p. 1662 - 1668$$n3$$p1662 - 1668$$tNano letters$$v20$$x1530-6992$$y2020
000874556 8564_ $$uhttps://juser.fz-juelich.de/record/874556/files/SI_yu19.pdf$$yRestricted
000874556 8564_ $$uhttps://juser.fz-juelich.de/record/874556/files/acs.nanolett.9b04788.pdf$$yRestricted
000874556 8564_ $$uhttps://juser.fz-juelich.de/record/874556/files/main_yu.pdf$$yPublished on 2020-02-11. Available in OpenAccess from 2021-02-11.
000874556 8564_ $$uhttps://juser.fz-juelich.de/record/874556/files/SI_yu19.pdf?subformat=pdfa$$xpdfa$$yRestricted
000874556 8564_ $$uhttps://juser.fz-juelich.de/record/874556/files/acs.nanolett.9b04788.pdf?subformat=pdfa$$xpdfa$$yRestricted
000874556 8564_ $$uhttps://juser.fz-juelich.de/record/874556/files/main_yu.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-11. Available in OpenAccess from 2021-02-11.
000874556 909CO $$ooai:juser.fz-juelich.de:874556$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130514$$aForschungszentrum Jülich$$b2$$kFZJ
000874556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b3$$kFZJ
000874556 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000874556 9141_ $$y2020
000874556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874556 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874556 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000874556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2017
000874556 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2017
000874556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874556 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874556 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874556 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874556 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874556 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874556 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874556 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000874556 9801_ $$aFullTexts
000874556 980__ $$ajournal
000874556 980__ $$aVDB
000874556 980__ $$aUNRESTRICTED
000874556 980__ $$aI:(DE-Juel1)IBI-5-20200312
000874556 981__ $$aI:(DE-Juel1)IAS-2-20090406