001     874556
005     20240610121106.0
024 7 _ |a 10.1021/acs.nanolett.9b04788
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 2128/25326
|2 Handle
024 7 _ |a altmetric:79970236
|2 altmetric
024 7 _ |a pmid:32046489
|2 pmid
024 7 _ |a WOS:000526408800025
|2 WOS
037 _ _ |a FZJ-2020-01510
082 _ _ |a 660
100 1 _ |a Yu, Qingfen
|0 P:(DE-Juel1)165750
|b 0
245 _ _ |a Osmotic Concentration-Controlled Particle Uptake and Wrapping-Induced Lysis of Cells and Vesicles
260 _ _ |a Washington, DC
|c 2020
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1595395157_1261
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In vivo, high protein and ion concentrations determine the preferred volumes of cells, organelles, and vesicles. Deformations of their lipid-bilayer membranes by nanoparticle wrapping reduce the interior volumes available to solutes and thus induce large osmotic pressure differences. Osmotic concentration can therefore be an important control parameter for wrapping of nanoparticles. We employ a curvature-elasticity model of the membrane and contact interaction with spherical particles to study their wrapping at initially spherical vesicles. Although the continuous particle-binding transition is independent of the presence of solutes, the discontinuous envelopment transition shifts to higher adhesion strengths and the corresponding energy barrier increases with increasing osmotic concentration. High osmotic concentrations stabilize partial-wrapped, membrane-bound states for both, particle attachment to the inside and the outside. In this regime, wrapping of particles controls membrane tension, with power-law dependencies on osmotic concentration and adhesion strength. For high adhesion strengths, particle wrapping can lead to the opening of mechanosensitive channels in cell membranes and to lysis. Membrane tension-induced stabilization of partial-wrapped states as well as wrapping-induced lysis play important roles not only for desired mechano-bacteriocidal effects of engineered nanomaterials but may also determine viral burst sizes of bacteria and control endocytosis for mammalian cells.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dasgupta, Sabyasachi
|0 P:(DE-Juel1)142341
|b 1
700 1 _ |a Auth, Thorsten
|0 P:(DE-Juel1)130514
|b 2
|e Corresponding author
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.9b04788
|g Vol. 20, no. 3, p. 1662 - 1668
|0 PERI:(DE-600)2048866-X
|n 3
|p 1662 - 1668
|t Nano letters
|v 20
|y 2020
|x 1530-6992
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/874556/files/SI_yu19.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/874556/files/acs.nanolett.9b04788.pdf
856 4 _ |y Published on 2020-02-11. Available in OpenAccess from 2021-02-11.
|u https://juser.fz-juelich.de/record/874556/files/main_yu.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/874556/files/SI_yu19.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/874556/files/acs.nanolett.9b04788.pdf?subformat=pdfa
856 4 _ |y Published on 2020-02-11. Available in OpenAccess from 2021-02-11.
|x pdfa
|u https://juser.fz-juelich.de/record/874556/files/main_yu.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874556
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130514
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBI-5-20200312
|k IBI-5
|l Theoretische Physik der Lebenden Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21