000874602 001__ 874602
000874602 005__ 20240712113146.0
000874602 0247_ $$2doi$$a10.1103/PhysRevE.101.042603
000874602 0247_ $$2Handle$$a2128/25913
000874602 0247_ $$2altmetric$$aaltmetric:79294097
000874602 0247_ $$2pmid$$apmid:32422712
000874602 0247_ $$2WOS$$aWOS:000524328800004
000874602 037__ $$aFZJ-2020-01530
000874602 082__ $$a530
000874602 1001_ $$00000-0002-5142-8248$$aWang, Yule$$b0
000874602 245__ $$aFracture dynamics of correlated percolation on ionomer networks
000874602 260__ $$aWoodbury, NY$$bInst.$$c2020
000874602 3367_ $$2DRIVER$$aarticle
000874602 3367_ $$2DataCite$$aOutput Types/Journal article
000874602 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602856600_16786
000874602 3367_ $$2BibTeX$$aARTICLE
000874602 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874602 3367_ $$00$$2EndNote$$aJournal Article
000874602 520__ $$aThis article presents a random network model to the study fracture dynamics on a scaffold of charged and elastic ionomer bundles that constitute the stable skeleton of a polymer electrolyte membrane. The swelling pressure upon water uptake by this system creates the internal stress under which ionomer bundles undergo breakage. Depending on the local stress and the strength of bundle-to-bundle correlations, different fracture regimes can be observed. We use kinetic Monte Carlo simulations to study these dynamics. The breakage of individual bundles is described with an exponential breakdown rule and the stress transfer from failed to intact bundles is assumed to exhibit a power-law-type spatial decay. A central property considered in the analysis is the frequency distribution of percolation thresholds, which is employed to analyze fracture regimes as a function of the stress and the effective range of stress transfer. Based on this distribution, we introduce an order parameter for the transition from random breakage to crack growth regimes. Moreover, as a practically important outcome, the time to fracture is analyzed as a descriptor for the lifetime of polymer electrolyte membranes.
000874602 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000874602 588__ $$aDataset connected to CrossRef
000874602 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b1$$eCorresponding author
000874602 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.101.042603$$gVol. 101, no. 4, p. 042603$$n4$$p042603$$tPhysical review / E$$v101$$x1063-651X$$y2020
000874602 8564_ $$uhttps://juser.fz-juelich.de/record/874602/files/INV_20_MAR_003361.pdf
000874602 8564_ $$uhttps://juser.fz-juelich.de/record/874602/files/INV_20_MAR_003361.pdf?subformat=pdfa$$xpdfa
000874602 8564_ $$uhttps://juser.fz-juelich.de/record/874602/files/PhysRevE.101.042603.pdf$$yOpenAccess
000874602 8564_ $$uhttps://juser.fz-juelich.de/record/874602/files/PhysRevE.101.042603.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874602 8767_ $$8INV/20/MAR/003361$$92020-03-18$$d2020-03-19$$eColour charges$$jZahlung erfolgt$$zBelegnr. 1200151481
000874602 909CO $$ooai:juser.fz-juelich.de:874602$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000874602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b1$$kFZJ
000874602 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000874602 9141_ $$y2020
000874602 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874602 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874602 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000874602 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874602 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874602 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874602 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874602 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874602 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874602 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874602 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2017
000874602 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874602 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874602 920__ $$lyes
000874602 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000874602 9801_ $$aAPC
000874602 9801_ $$aFullTexts
000874602 980__ $$ajournal
000874602 980__ $$aVDB
000874602 980__ $$aUNRESTRICTED
000874602 980__ $$aI:(DE-Juel1)IEK-13-20190226
000874602 980__ $$aAPC
000874602 981__ $$aI:(DE-Juel1)IET-3-20190226