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Fracture dynamics of correlated percolation on ionomer networks
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This article presents a random network model to the study fracture dynamics on a scaffold of charged and
elastic ionomer bundles that constitute the stable skeleton of a polymer electrolyte membrane. The swelling
pressure upon water uptake by this system creates the internal stress under which ionomer bundles undergo
breakage. Depending on the local stress and the strength of bundle-to-bundle correlations, different fracture
regimes can be observed. We use kinetic Monte Carlo simulations to study these dynamics. The breakage of
individual bundles is described with an exponential breakdown rule and the stress transfer from failed to intact
bundles is assumed to exhibit a power-law-type spatial decay. A central property considered in the analysis is the
frequency distribution of percolation thresholds, which is employed to analyze fracture regimes as a function of
the stress and the effective range of stress transfer. Based on this distribution, we introduce an order parameter
for the transition from random breakage to crack growth regimes. Moreover, as a practically important outcome,
the time to fracture is analyzed as a descriptor for the lifetime of polymer electrolyte membranes.
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I. INTRODUCTION

Fracture formation on structural materials and complex
networks is a vital subsubdiscipline of statistical physics
[1]. An important goal in this realm is to make a lifetime
prediction, i.e., to determine after what time a fracture will
form in the system that will lead to the loss of its required
function. The historical origin of the field is in the area
of textile engineering, where Pierce conducted pioneering
theoretical research to study fatigue failure in textile fibers [2].
Other examples of fatigue problems include traffic networks,
computer networks, and electrical power grids, as reviewed in
Ref. [3].

In electrochemical devices, which are crucial enablers of
the global energy transition, the formation and propagation
of fractures determines the lifetime of composite porous
electrodes and polymer-based electrolytes. These functional
components must strike delicate balances as mechanically
and chemically robust separators, transport media for gases,
solvent molecules, or ionic species, and electrocatalytically
active media with a high internal surface area [4].

Polymer electrolyte membranes (PEMs) are key compo-
nents in fuel cell and electrolyzer devices for low-temperature
operation [5]. PEMs are needed in polymer electrolyte fuel
cells (PEFCs) as highly transport-selective proton conductors
and stable separators between gas compartments on anode and
cathode sides. The described functions are crucial to maintain
an electrical potential difference that drives reactions in the
two electrodes and thus determines the power performance
of a cell. The nucleation of cracks and their growth into
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sample-spanning fractures is a lifetime-limiting event in these
systems. If a sample-spanning fracture forms in an operating
fuel cell, it will allow high crossover fluxes of reactant gases,
viz., hydrogen gas from the anode and oxygen gas from the
cathode. This event will cause the breakdown of the fuel cell
voltage [6–8].

Past activities in theoretical PEM science have employed
molecular dynamics simulations and mean-field theory [9,10]
to study the self-assembly of ionomer strands in solution, as
illustrated in the upper rail of Fig. 1. These studies have iden-
tified cylindrical bundles of ionomer backbones as the prevail-
ing structural motif in the membrane skeleton [11,12]. Stable
bundles are assemblies of about 6–20 hydrophobic backbones,
resulting in bundle diameters of 3–5 nm. Geometrical bundle
parameters could be validated with scattering and microscopy
studies [13,14]. Effective cross-linking among bundles occurs
because single backbone strands exceed the length of a bundle
and therefore participate in neighboring bundles, leading to
the emergence of a bundle network. Bundles could assem-
ble further into nanoporous superstructures. Based on this
understanding of structure formation in PEMs, a theory of
water sorption and swelling was developed, which treats the
membrane as a poroelastic medium with highly charged walls
[15,16]. The theory of bundle formation provides sizes as well
as the density of anionic surface groups and elastic properties
of ionomer bundles. The theory of water sorption and swelling
gives a statistical distribution of pore sizes and the internal
swelling stress (or pressure) in pores, as a function of ionomer
molecular structure and external conditions [T and relative
humidity (RH)]. The merging point of both theories is a theory
of fracture formation in poroelastic PEMs.

Specific challenges in problems of fracture formation in
PEMs stem from the presence of a strongly fluctuating

2470-0045/2020/101(4)/042603(10) 042603-1 ©2020 American Physical Society



YULE WANG AND MICHAEL EIKERLING PHYSICAL REVIEW E 101, 042603 (2020)

fracture on 
ionomer bundle network

bond percolation
on lattice

spanning

cluster

spanning

cluster

fibers

self-assemble

into bundle

bundles 

form

network

breakage

of

 bundles 

bond graph

(square lattice )

percolation

FIG. 1. Ionomer fibers with hydrophobic backbone (red) and grafted side chains (red) terminated with sulfonic acid head groups (yellow)
that dissociate in water. The upper rail illustrates self-aggregation into bundles of size k (number of fibers in the bundle) and cross-linking of
bundles into a network. In the swollen membrane state, bundles experience an internal of bundles swelling stress that triggers random breakage
events. The lower rail illustrates how fracture formation in the bundle network is mapped onto a dynamic bond percolation problem.

internal stress field caused by water sorption. Water uptake
and swelling are controlled by the internal osmotic pressure
that is balanced by the elastic pressure generated by the bundle
network. The random statistical character of the stress field
can be gleaned from Fig. 7(b) of Ref. [16]. The network of
bundles has to withstand pressures in the order of 107 Pa.
Elastic properties of ionomer bundles and the local stress they
experience are thus as well subject to random distributions.
Furthermore, a varying external load could be superimposed,
which is caused by the clamping pressures transmitted via
flow fields with their characteristic alternating rib and channel
structure [17]. The main objective of fracture modeling is to
predict the formation time of the first sample-spanning frac-
ture, which represents a primary descriptor of the membrane
lifetime.

How does fatigue failure nucleate and how does it prop-
agate in PEMs? Fracture formation is a dynamic network
process [1,18–20]. It can be described as a sequence of
bundle breakage events that are statistically uncorrelated or
correlated. The former case corresponds to the random per-
colation limit and it was studied by Melchy and Eikerling
[21]. In the correlated case, fracture formation is caused by
cascading breakages of network elements, which are exponen-
tially accelerated by stress accumulation on surviving bundles.
This leads to the follow-up question: How is the mechanical
stress or load of a failed bundle redistributed within the
remaining intact parts of the network? The answer depends
on network properties, stress regime, and the stress-transfer
law considered. Here, we study and compare two regimes of
load sharing: global load sharing (GLS) [22,23] and local load
sharing (LLS) [24].

The theory of fracture formation in PEMs is developed in
several steps. The rate of individual bundle breakage will be
adopted from previous work, wherein a mathematical rate law
as a function of bundle size and local stress was developed
[21]. Thereafter, also following Ref. [21], the problem of
fracture formation will be mapped onto a graph model. These
steps will be revisited in Sec. II. The model developed in
Ref. [21] was used to study fracture formation in the regime
of weak internal swelling stress, referred to as the random
breakage regime. In that work from 2015, an analytical solu-

tion was found, which related the time to fracture to network
connectivity and dimension, the intrinsic rate of breaking of
ionomer fibers and their bundles, the activation volume, and
the stress field, assumed as uniform and constant.

When the local stress is more severe, strong spatial corre-
lations and inhomogeneous stress fields invalidate the random
percolation approach; this is the case considered in the present
work. Local redistribution of stress upon bundle breakage
(load sharing) and damage accumulation on surviving bundles
favors fracture formation via nucleation and the growth of
cracks [1,18,19,25]. For this case, we adopt a kinetic Monte
Carlo approach to simulate these processes [26–30]. The spe-
cific stress redistribution law dictates the percolation behavior
of cracks and the dynamics of fracture formation in different
regimes of local stress and correlation among bundles, which
can be related to different swelling regimes in PEMs.

II. THE MODEL

The structural membrane motif underlying the devel-
opment of the percolation model is illustrated in Fig. 1.
As we have learned from calculations based on mean-field
theory [31–36] and molecular dynamics (MD) simulations
[34,37,38], individual ionomer backbone strands in solution
assemble into cylindrical bundles. The stable bundle size,
given by the number k of strands in a bundle [9,39], results
from competing effects of backbone hydrophobicity, favoring
phase separation, and electrostatic repulsion due to charged
ionic end groups at grafted ionomer side chains, favoring
dispersion of ionomer chains in solution. Effective cross-
linking of ionomer bundles occurs since the length of a single
ionomer strand exceeds the length of a bundle [39]. Upon
increasing the ionomer concentration in solution, superstruc-
tures of bundles evolve which give rise to the formation of
porous membrane morphologies, as seen in numerous scatter-
ing studies [12,40,41]. We map this bundle-network morphol-
ogy onto a random network (graph) model, as illustrated in
Fig. 1. The problem of fracture formation thereby becomes
a percolation problem. In Fig. 1, each bond represents a
cylindrical ionomer bundle formed by k fibers [9,10,21]. The
size of a bundle determines its mechanical properties, that is,
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its Young’s modulus and tensile strength, and its electrostatic
properties, viz., the density of charged anionic groups on the
bundle surface. These bundle properties determine the water
sorption behavior of the membrane, as studied by Eikerling
and Berg [15] and Safiollah et al. [16], and its propensity to
fracture formation [21]. The swelling pressure corresponding
to equilibrium water sorption creates the internal stress that
triggers bundle breakage events.

In a further simplifying transformation, the random bundle
network is replaced by an ordered lattice like structure. In the
present work, in order to keep computational costs reasonable,
we have considered a bundle network with a two-dimensional
square lattice structure, as we were primarily interested in ob-
taining a qualitative understanding of the impact of correlation
effects on fracture formation in this bundle network. In future
work, we will consider more realistic and more complex
three-dimensional (3D) lattice geometries. The regular lattice
of bundles is prepared in an initial state, in which all bundles
have equal k and thus equal mechanical strength. Moreover,
a uniform initial stress field is assumed, meaning that each
bundle in the pristine lattice is intact and under identical stress.
In future work, we will relax these assumptions to explore the
impact of nonuniformity in bundle properties and the initial
stress field.

Fracture formation in the bundle-network model is the
consequence of individual bundle breakage events that occur
randomly in space and time. Over time, clusters of broken
bundles, representing microscopic cracks, grow and increase
in density. The stress field evolves and becomes nonuniform.
At a certain time, a percolating cluster of broken bundles
will emerge, corresponding to a sample-spanning fracture
[1,42,43]. In the case of a PEM, this time to fracture, denoted
tPEM subsequently, represents the membrane lifetime, as it
marks the point at which the membrane becomes transmissive
for reactant gases and thereby loses its function as a separator
of anode and cathode gas compartments [44].

Individual bundle breakage events could occur in an un-
correlated sequence. This situation corresponds to the ran-
dom breakage scenario that was studied in Ref. [21]; it is
relevant in a regime of low water uptake by the PEM and
thus weak swelling stress exerted on pore walls and bundles.
However, bundle breakage events could also happen in a
highly correlated manner, which is expected in the strong
stress regime encountered at large swelling. The latter, more
general scenario is the focus of the present work.

Following Ref. [45], the rate of thermally activated break-
age of a single ionomer fiber is

κf (σf ) = τ−1
0 exp (−β(Ea − νσf )), (1)

where τ0 is the period of an atomic bond vibration; β = kBT ,
with Boltzmann constant kB; Ea the activation energy of fiber
breaking; ν the activation volume of an ionomer fiber; and σf

the stress on a single fiber.
Using the assumption of equal load sharing over backbone

fibers a bundle, an expression for the breakage rate of a bundle
was deduced in Ref. [21], which is given by

κb(σf )−1
= τ0 exp(βEa )

k
∑

j=1

exp
(

−kβνσf

j

)

j
. (2)

TABLE I. Effective coefficients αk/α1 and ηk/η1 for k � 10.

k 2 3 4 5 6 10

ηk/η1 0.50 0.33 0.25 0.20 0.17 0.11
αk/α1 1 1 0.99 0.97 0.94 0.77

In an attempt to generalize this breakage law, we approximate
Eq. (2) by an exponential expression,

κb(σ ) = αk exp(ηkσ ), (3)

where σ is the stress on the bundle, σ = kσf . This form of
the breakage rate is exactly equal to Eq. (2) for k = 1, where
α1 = τ−1

0 exp(−βEa ) and η1 = βν. For 1 < k � 10, Eq. (3)
approximates Eq. (2) with effective coefficients that are listed
in Table I. The k values considered in Table I span the typical
range encountered in Nafion-type PEMs [9,10,21]. For k ≫ 1,
Eq. (3) fails to reproduce Eq. (2) in the tail region of large σ .
Fits of Eq. (2) by Eq. (3) have been optimized for the range of
ηkσ from 0 to 30 [46].

In the following, we will consider the case with k = 1.
Under the premise that Eq. (3) remains, to very good approx-
imation, valid for k from 2 to 10, results that we obtain for
k = 1 can be generalized to k from 2 to 10, using coefficients
in Table I.

Upon breakage of a bundle, the load that it carried prior
to breaking will be redistributed to surviving bundles in the
network. For simplicity, we will assume that the total stress
in the network is conserved at each breakage event. We
assume that the load redistribution follows a power-law-type
redistribution rule, as introduced by Hidalgo et al. [18],

F (ri j, γ ) = r
−γ

i j





∑

j∈I

r
−γ

i j





−1

, (4)

where ri j is the distance between the midpoints of the failed
bundle i and an intact bundle j in the lattice, γ is a correlation
exponent related to the load distribution range, and I denotes
the set of intact bundles. The load transfer function, which
describes the load on a surviving bundle j after time step τ , is

σ j (t + τ ) = σ j (t + τ − 1) + σi(t + τ − 1)F (ri j, γ ), (5)

where σi is the stress on element i.
The load redistribution rule, adopted in this work for the

bundle-network model, is widely used in fiber bundle models
(FBMs) of fracture [47,48]. The limit γ → ∞ corresponds to
the case when the load of the failed bundle is transferred to
nearest neighbors, referred to as the local load sharing (LLS)
regime. This regime is attained to very good approximation
when γ > 10 [49] The opposite limit, γ → 0, corresponds to
global load sharing (GLS), wherein all intact bundles receive
exactly the same fraction of the load released in the breakage
of a bundle. The GLS regime, valid under conditions of low
initial stress, represents weakly correlated systems that will be
described well as random percolation systems [50]. The case
of uncorrelated percolation, studied in Ref. [21], wherein no
load redistribution had been considered, is a special case of the
GLS regime. Neglecting load redistribution in that approach,
as accounted for in the second term on the right-hand side of
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Eq. (5), results in an overestimation of the time to fracture.
This shortcoming of the previous approach is also being
addressed in the present work.

It is important to note that the basic model variant consid-
ered in this article assumes that the total stress is conserved.
This assumption is usually valid for materials under a con-
trolled external load. However, in the case of a PEM explored
here, the stress on bundles is generated internally by water
uptake and swelling, and it will usually not be conserved.
In future studies using this model, we will introduce a stress
dissipation rule to account for the change in total load during
crack growth.

III. KINETIC MONTE CARLO SIMULATIONS

A rejection-free kinetic Monte Carlo (MC) method was
implemented to simulate the stochastic process of fracture
formation on a lattice-type bundle network [29,30,51]. After
a time interval τ , one bundle breakage event is randomly
selected to happen. The probability that a bundle i is selected
is given by

pi =
κi

∑

j∈I κ j

, (6)

where κi is the rate defined in Eq. (3), which depends on the
accumulated load σi on the bundle. Bundle i is selected if

i−1
∑

j=1

p j � ρ (1) <

i
∑

j=1

p j, i > 1,

0 � ρ (1) < p1, i = 1,

(7)

where ρ (1) is a random number selected from a uniform
distribution [0, 1).

The time interval τ is determined by

τ = −
ln(ρ (2))
∑

j∈I κ j

, (8)

where ρ (2) is a random number sampled from a uniform dis-
tribution [0, 1). Following a breakage event, the load released
in the event is redistributed to surviving bundles according to
Eqs. (4) and (5). After calculation of the new load distribution,
the rates of bundle breakage are recalculated for each intact
bundle according to Eq. (3). Moreover, the statistics of clusters
of broken bundles is updated at each MC step.

A Monte Carlo run for a given lattice configuration and
set of initial parameters is terminated when all bundles are
fractured. The percolation threshold is reached when the first
cluster of broken bonds is formed that spans across the whole
lattice, connecting opposite boundaries in any of the principal
directions. The time at which this sample-spanning cluster is
formed marks the time to fracture tPEM. We adopt a tree-based
algorithm to determine the percolation threshold for finite
lattices, following Refs. [52,53].

In this article, we report results for a finite L × L square
lattice with L = 100. The number of bundles in the lattice is
N = 2L2 − 2L. For each lattice configuration with a given set
of values for k, L, γ , σ 0, and T , we perform n independent
runs. The percolation thresholds obtained for these n runs
(or realizations) exhibit a frequency distribution. For a finite

(c)

(e)

(a) (b)

(d)

(f)

FIG. 2. Normalized frequency distributions of percolation
thresholds for a square lattice with L = 100, for (a) a random
breakage regime (ηkσ = 0.20 and γ = 100, single Gaussian), (c) a
correlated crack growth regime (ηkσ = 2.0 and γ = 100, single
Gaussian), and (e) the crossover region (ηkσ

0 = 0.46 and γ = 10,
two Gaussians). (b), (d), and (f) show snapshots of lattice config-
urations corresponding to (a), (c), and (e). In the transition region,
two clearly distinguishable peaks for random breakage (left) and
correlated crack growth (right) are visible and both mechanisms
coexist (statistically) on different MC copies, as illustrated in (f).

lattice size, the width of this distribution is finite. In the
limit of an infinite lattice size, a δ-function-like distribution is
approached. From this frequency distribution, an expectation
value of the percolation threshold can be determined. In most
cases, n = 5000–10 000 runs were performed. We employ the
ranges of ηkσ

0 = 0–3 and γ = 0–100 to scan the dynamic
range from weakly correlated random breakage to highly
locally correlated crack growth.

IV. RESULTS AND DISCUSSION

Figure 2(a) illustrates a frequency distribution of percola-
tion thresholds, obtained with ηkσ

0 = 0.20, γ = 100, and n =

5650. This case falls into the weak correlation regime. The
frequency distribution exhibits a single peak and it resembles
a Gaussian distribution. In further simulations (not shown),
we verified that the width of the distribution decreases with
increasing L, approaching a δ-function-like distribution in the
L → ∞ limit, as expected.
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For networks with strong local correlation, as realized for a
large initial stress σ 0 or high γ , the system exhibits correlated
crack growth behavior at an early stage. The frequency distri-
bution of percolation thresholds for this case is illustrated in
Fig. 2(c), obtained with ηkσ

0 = 2.0, γ = 100, and n = 6430.
It exhibits a Gaussian-like shape as well, but with a larger
width.

Interestingly, we can identify an intermediate or crossover
regime, in which the frequency distribution of percolation
thresholds exhibits two peaks, as depicted in Fig. 2(e) for the
case ηkσ

0 = 0.46, γ = 10, and n = 5000. In this case, both
damage mechanisms, namely, random breakage (left peak)
and correlated crack growth (right peak), coexist in a statis-
tical sense. The dominant mechanism of cluster growth for a
specific MC realization depends on whether correlated crack
growth is triggered at a time point prior to reaching the perco-
lation threshold by uncorrelated cluster growth. Figure 2(f)
shows snapshots of MC runs on two different realizations
of the system. With the two-peaked shape of the frequency
distribution function, we can determine two expectation val-
ues of the percolation threshold. The area under the second
peak relative to the total area under the distribution function
provides a quantitative means to assess the importance of
correlation effects for a given lattice configuration and set of
conditions.

We reproduce the frequency distributions of percolation
thresholds with two Gaussian functions to determine their
mean values µ1, µ2, standard deviations σ1, σ2, and areas
A1, A2 under the distinct peaks. We define

ξ = A2/(A1 + A2) (9)

as an order parameter for the transition between random
breakage (ξ ≃ 0) and correlated crack growth regimes (ξ ≃

1). Moreover, ξ can be employed as a quantitative measure of
the strength of local correlations.

Figure 3 depicts how ξ depends on ηkσ
0 and γ .

Figure 3(a) shows ξ as a function of σ 0 with γ as parameter,
whereas Fig. 3(b) shows ξ as a function of γ with σ 0 as
parameter. As can be seen in Fig. 3, for ηkσ

0 � 0.30 only the
first peak (ξ ∼ 0) occurs over the whole range of γ values ex-
plored. In this regime of weak stress, correlated crack growth
does not occur. The transition regime, in which two peaks are
seen in the frequency distribution plots, extends over narrow
ranges of ηkσ

0. For large γ , this range is 0.41 � ηkσ
0 �

0.46, indicating that the transition from random breakage to
correlated crack growth behavior is relatively sharp. Using
ξ as an order parameter to explore this transition, we have
generated the phase diagram in Fig. 4. The transition region
with the statistical coexistence of both damage mechanisms is
very narrow, confirming that ξ is a suitable parameter to assess
this transition in the plane spanned by ηkσ

0 and γ .
It should be noted that for ηkσ

0 > 3.0, at γ = 1–2.5,
three peaks were observed. At this point, we do not have an
explanation for the third peak in terms of another independent
damage mechanism.

Figures 5(a) and 5(b) show µ1 and µ2 as functions of γ

for different values of σ 0. The expectation value of the per-
colation threshold of the uncorrelated percolation case with
γ = 0 or σ 0 = 0 is puncor

c = 0.4955 ± 0.0002 [54]. As can
be seen in Fig. 5(a), µ1, which represents random breakage

(a)

(b)

FIG. 3. Plots of the parameter ξ = A2/(A1 + A2) over (a) the
initial stress of each bundle σ 0 (scaled by ηk) with γ as the parameter,
and (b) γ with σ 0 as the parameter. Interpolated lines are shown to
guide the eye.

crack 
growth

random 
breakage

FIG. 4. Phase diagram, illustrated as a color map, in the plane
spanned by γ and ηkσ

0. The diagram was generated using Fig. 3 with
ξ as the order parameter. Regimes of random breakage and correlated
crack growth are clearly discernible, separated by a narrow crossover
region.
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(b)

=0

(a)

FIG. 5. Plots of (a) µ1 and (b) µ2 as a function of γ with ηkσ
0 as

the parameter.

events, closely approaches this value. As a function of γ , µ1

decreases at first. At ξ ∼ 0, corresponding to a long-range
correlated system, an increase in the strength of local correla-
tions helps the growth on several clusters, accelerating cluster
merging and thereby promoting the formation of the spanning
cluster. Similar behavior was observed for long-range corre-
lated systems explored in Refs. [55–61]. The minimum in µ1

is found at around γ = 1–2. As the local correlation becomes
even stronger upon a further increase of γ , growth happens
at one or a few clusters only, which is not contributing to
connecting clusters. The variation of µ1 is, however, small.

More significant changes are seen in the plot of µ2 as a
function of γ . The values of µ2 vary in the range 0.53 � µ2 �

0.64. In the regime of weak initial stress, µ2 increases from
an initially low value at small γ to asymptotically approach a
plateau value for γ � 10. At a high initial stress, ηkσ

0 > 0.5,
µ2 goes through a sharp maximum at small γ and then relaxes
to a lower plateau upon increasing γ . The larger is ηkσ

0, the
sharper is the maximum and the lower is the plateau value. As
for µ2 as a function of ηkσ

0 (not shown), it first rises and then
drops for all γ . The drop in the percolation threshold with the
increase of the correlation strength was previously reported in
Ref. [62].

For ηkσ
0 < 3.0, the variances of both peaks in the distribu-

tion of percolation thresholds, viz., σ1 and σ2, increase with ξ ,
but the peak due to random breakage is narrower, with σ1 in
the range 0.01–0.02, whereas σ2 lies in the range 0.05–0.12.
In the correlated crack growth regime, the fracture formation
on the lattice is dominated very strongly by the largest crack,
which exhibit a large variability in shape, among different
simulation runs, resulting in the larger σ2. In the random
breakage regime, percolation clusters exhibit a high degree of
similarity for different simulation runs performed at a given
set of parameters, resulting in a narrow peak in the probability
distribution of percolation thresholds. The general trends are
that σ1 and σ2 increase with increasing ηkσ

0 and γ , with
the more regular and pronounced trends seen in σ2. High
sensitivities of σ2 to these parameters are seen in the random
breakage regime. In the correlated crack growth regime, at
γ > 5, σ2 becomes independent of γ . The variations of σ1

and σ2 with L will be analyzed in our forthcoming study.
To gain further insight into percolation behavior and the

underlying damage growth mechanisms, we analyze the size
of the largest cluster of broken bonds SL (normalized to N)
as a function of the fraction of failed bonds in Fig. 6. For
damage propagation by random breakage, the formation of the
sample-spanning cluster proceeds in three stages, illustrated
with the red solid line in Fig. 6(a): (I) random nucleation of
isolated cracks (slope ∼ 0); (II) merging of cracks into larger
clusters (slope ≫ 1); and (III) growth of the largest crack
(slope ∼ 1). Regardless of the overall correlation strength,
viz., γ , stage I is always observed since the initial stress is
uniformly distributed on the lattice. As ηkσ

0 or γ become
larger, i.e., the system shifts towards the crack growth regime
in Fig. 4, the merging stage is becoming less pronounced. In
this regime, correlated growth of a single crack dominates.
Eventually, for systems with ξ ∼ 1 (dashed-dotted line), a
direct transition from stage I to stage III occurs, bypassing the
merging stage II. Upon increasing the value of ξ , the accumu-
lation of stress on the largest crack is accelerating, which has
a significant impact on the correlated crack growth regime,
affecting the percolation threshold and time to fracture. This
strong acceleration effect is due to the exponential breakage
rule. The effect is much weaker if a power-law breakage rule
is considered, as in Ref. [19], in contrast to the unchanged
fracture pattern in the study of Ref. [63] even for the LLS
scheme.

Figure 6 illustrates the growth of the largest cluster in
three stress ranges: ηkσ

0 = 0.30 [Fig. 6(b)], ηkσ
0 = 0.46

[Fig. 6(c)], and ηkσ
0 = 2.0 [Fig. 6(d)]. SL varies from GLS to

LLS, corresponding to different damage mechanisms. When
ηkσ

0 = 0.30, the overlap of the SL curves in Fig. 6(b) in-
dicates that only the random breakage mechanism occurs,
consistent with ξ ∼ 0 for σ 0 � 0.30 in Fig. 3. As for Fig. 6(c),
representing the crossover region, as shown by the shaded
area, correlated crack growth was not observed even for the
extreme case of LLS (i.e., for large γ ). But the merging
stage is shrinking, indicating the transition to correlated crack
growth. In Fig. 6(d), all three pathways of formation and
growth of clusters are present, corresponding to the param-
eter ranges 0 � ξ � 2 (random breakage regime), 2.2 � ξ �

2.4 (crossover region), and ξ � 2.6 (correlated crack growth
regime).
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γ γ

(b) (c)

(d)

γ

(a)I    

II

III

nucleation

merging of cracks

growth on largest crack

III

II

I

uncorrelated
percolation
crossover
correlated
crack growth

FIG. 6. Normalized growth of the maximum crack size SL/N

with the fraction of failed bonds in the lattice. The horizontal dashed
lines in (a) and in the insets of (b)–(d) indicate the size of the largest
cluster in the uncorrelated percolation case. In (a), three regimes
are shown—random breakage (red solid line), crossover, where 0 <

ξ < 1 (dashed line), and correlated crack growth (dashed-dotted
line)—and three growth stages are indicated: (I) nucleation of cracks,
(II) merging of cracks, and (III) growth concentrated on the largest
crack. Cluster growth is shown for different range regimes in (b) with
ηkσ

0 = 0.30, (c) with ηkσ
0 = 0.46, and (d) with ηkσ

0 = 2.0. The
shaded area indicates the crossover region where 0 < ξ < 1.

Next, we analyze the time to fracture tPEM for the evaluated
ranges of σ 0 and γ . Results are displayed in Fig. 7. The
frequency distribution of tPEM values, obtained in each case
over n MC runs performed under identical conditions, is
shown for three different systems, with details given in the
caption. It exhibits a single peak for the random breakage
regime, i.e., for ξ ∼ 0, shown in Fig. 7(a), as well as in
the correlated crack growth regime with ξ ∼ 1, shown in
Fig. 7(c). A combination of two peaks can be discerned in the
crossover regime, Fig. 7(b). Using these distributions, we have
calculated the expectation value of tPEM, which is depicted as
a function of ηkσ

0 with γ as the parameter in Fig. 8(a), and,
alternatively, as a function of γ with ηkσ

0 as the parameter

FIG. 7. Frequency distributions of the time to fracture tPEM (nor-
malized to αk) for systems in the regime of random breakage (left,
ηkσ

0 = 0.30 and γ = 4.0), crossover (middle, ηkσ
0 = 0.41, γ =

10), and correlated crack growth (right, ηkσ
0 = 5.0, γ = 100). The

distribution in the crossover region exhibits a superposition of two
Gaussian peaks.

in Fig. 8(b). Due to the exponential bundle breakage law,
introduced in Eq. (2), tPEM follows essentially an exponential
dependence on ηkσ

0.
Figure 8(b) displays tPEM as a function of γ . It exhibits a

peculiar transition between two plateaus, from a higher value
in the random breakage regime (or GLS regime), attained for
γ < 2, to a lower value in the correlated crack growth regime
(LLS regime) that is approached asymptotically for γ > 5.

(b)

(a)

FIG. 8. Time to fracture (normalized to αk) (a) on a log scale as
a function of ηkσ

0 with γ as the parameter and (b) as a function of γ

with ηkσ
0 as the parameter.
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TABLE II. Lifetime for k = 1, 3, 10 at T = 298 and 353 K in
the range of σ 0 = 3–30 MPa. The two limits for the range of tPEM

values given in parentheses correspond to γ varying from 0 to 100,
respectively.

k σ 0 (MPa) T = 298 K, tPEM (h) T = 353 K, tPEM (h)

1 3 4.2 × 105a 2.5 × 102a

5 (3.1–2.6) × 105 (2.0–1.6) × 102

30 (11–2.1) × 103 6.9–1.3
3 3 5 × 105b 3 × 102b

5 5 × 105b 3 × 102b

30 (16–8) × 104 (10–5.0) × 101

10 3 6 × 105b 4 × 102b

5 6 × 105b 4 × 102b

30 3.2 × 105a 2.0 × 102a

aThe changes of these values of tPEM are insignificant when varying
γ .
bThese values corresponds to ηkσ

0 < 0.2, in which the data were
not obtained. We approximated the values by extrapolating data in
Fig. 8(a).

The magnitude of the transition shows a high sensitivity to
ηkσ

0. At the highest stress value included in the plot, the
two plateaus differ by a factor of 10, whereas at low stress
values the transition becomes insignificant. These observa-
tions illustrate the concerted impact of stress and the effective
range of stress transfer on the dynamics of the percolation
transition. The position of the transition region on the γ axis
is rather insensitive to ηkσ

0. We notice similar observations
in the dynamic fracture behaviors reported in Refs. [18,64],
with a crossover from global to local load sharing occurring
at a critical value γc that is found around γ = 2, in agreement
with our findings. In the latter studies the property monitored
is the ultimate or critical stress, defined as the maximum load
the material can sustain before it breaks down.

Table II shows the dimensional lifetime tTEM (hours) ob-
tained with our model for σ 0 = 3, 5, and 30 MPa, bundle
sizes k = 1, 3, 10, and T = 298 and 353 K. We use τ0 =

1.0 × 10−11 s, Ea = 1.95 × 10−22 kJ, ν = 0.418 nm3 [45], as
well as the parameters in Table I for the calculations of αk and
ηk . As can be seen, temperature has a marked impact on tTEM,
with the higher T destabilizing the bundle network. Moreover,
tTEM decreases with increasing σ 0, whereas a larger k has a
stabilizing effect. While all these trends are reasonable, it will
be important in future work to evaluate tTEM for more realistic
lattice configurations in 3D.

V. CONCLUSIONS

In this article, a random network model was developed
to predict the lifetime of polymer electrolyte membranes
(PEMs). The model also provides general physical insights
into the problem of correlated bond percolation on a fracture
network under an exponential breakdown rule for bonds in the
network and a power-law stress transfer rule (rγ ). Correlation
in the fracture system is described by the exponent γ , which
controls the effective range of stress transfer and the initial
stress σ 0, which was assumed to be uniformly distributed
in this work. Results highlight the crossover between the
two limiting regimes: percolationlike random breakage in the
limit of weak correlation and crack growth in the limit of

strong local correlation. The following main conclusions can
be drawn:

(1) In the crossover region, the frequency distribution of
percolation threshold exhibits two Gaussian-like peaks. The
area of the second peak can be employed as an order param-
eter to assess the strength of local correlations. Accordingly,
we generated the phase diagram of two limiting regimes and
their crossover in the plane spanned by σ 0 and γ .

(2) Although the percolation thresholds may be intuitively
expected to drop with the increase of the correlation strength,
we observe this slight drop only when the local correlation is
very weak. Under stronger correlation, however, the percola-
tion thresholds grow even higher than that of the uncorrelated
case and eventually drop again when transiting to the regime
of correlated crack growth.

(3) We analyzed the growth dynamics on the largest cluster
in the different regimes. For correlated crack growth, the
merging phase is skipped.

(4) The statistics of percolation clusters was used for a
lifetime assessment of PEMs. The lifetime decreases expo-
nentially with σ 0. For a larger initial stress σ 0, the local
load sharing (LLS) regime significantly reduces the lifetime
of PEMs. As a function of γ , the PEM lifetime exhibits a
transition from a higher plateau at γ < 2 to a lower plateau
at γ > 10.

A possible extension of this work will be to construct a
phase diagram with the size of the lattice as an additional
degree of freedom. The current analysis is limited to lattices
with L = 100. It will be interesting to assess within the present
approach how fracture propagates when approaching the limit
of infinite lattice size. Preliminary studies for a limited range
of σ 0 and γ values have revealed a transition from random
breakage to correlated crack growth with increasing lattice
size. According to Shekhawat et al. [1] in their work on fuse
networks, the random breakage regime is just a finite-size
effect. Moreover, we have seen in preliminary calculations
(not shown here) that the time-to-fracture of the network
decreases with system size. Similar observations had been
made in the works of FBM models by Melchy and Eikerling
[21] and Yewande et al. [19]. This counterintuitive observation
is due to the assumption that the total stress is conserved.
As a result, a larger total amount of stress is present in
larger systems. Introducing a stress dissipation rule will result
in qualitatively different fracture propagation behavior for
L → ∞.

For the practical goal of making realistic predictions about
the lifetime of PEMs, in future work we will study three-
dimensional bundle networks with nonuniform distributions
of bundle sizes, stiffness, elastic modulus, and surface charge
density, as well as inhomogeneous initial stress distributions.
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