000874630 001__ 874630
000874630 005__ 20210130004732.0
000874630 0247_ $$2doi$$a10.1007/s00249-020-01424-1
000874630 0247_ $$2ISSN$$a0175-7571
000874630 0247_ $$2ISSN$$a0340-1057
000874630 0247_ $$2ISSN$$a1432-1017
000874630 0247_ $$2Handle$$a2128/24709
000874630 0247_ $$2altmetric$$aaltmetric:76984542
000874630 0247_ $$2pmid$$apmid:32123956
000874630 0247_ $$2WOS$$aWOS:000517713400001
000874630 037__ $$aFZJ-2020-01550
000874630 082__ $$a570
000874630 1001_ $$0P:(DE-HGF)0$$aLa Rosa, Carmelo$$b0
000874630 245__ $$aSymmetry-breaking transitions in the early steps of protein self-assembly
000874630 260__ $$aNew York$$bSpringer$$c2020
000874630 3367_ $$2DRIVER$$aarticle
000874630 3367_ $$2DataCite$$aOutput Types/Journal article
000874630 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1587735830_23510
000874630 3367_ $$2BibTeX$$aARTICLE
000874630 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874630 3367_ $$00$$2EndNote$$aJournal Article
000874630 520__ $$aProtein misfolding and subsequent self-association are complex, intertwined processes, resulting in development of a het-erogeneous population of aggregates closely related to many chronic pathological conditions including Type 2 Diabetes Mellitus and Alzheimer’s disease. To address this issue, here, we develop a theoretical model in the general framework of linear stability analysis. According to this model, self-assemblies of peptides with pronounced conformational flexibility may become, under particular conditions, unstable and spontaneously evolve toward an alternating array of partially ordered and disordered monomers. The predictions of the theory were verified by atomistic molecular dynamics (MD) simulations of islet amyloid polypeptide (IAPP) used as a paradigm of aggregation-prone polypeptides (proteins). Simulations of dimeric, tetrameric, and hexameric human-IAPP self-assemblies at physiological electrolyte concentration reveal an alternating dis-tribution of the smallest domains (of the order of the peptide mean length) formed by partially ordered (mainly β-strands) and disordered (turns and coil) arrays. Periodicity disappears upon weakening of the inter-peptide binding, a result in line with the predictions of the theory. To further probe the general validity of our hypothesis, we extended the simulations to other peptides, the Aβ(1–40) amyloid peptide, and the ovine prion peptide as well as to other proteins (SOD1 dimer) that do not belong to the broad class of intrinsically disordered proteins. In all cases, the oligomeric aggregates show an alternate distribution of partially ordered and disordered monomers. We also carried out Surface Enhanced Raman Scattering (SERS) measurements of hIAPP as an experimental validation of both the theory and in silico simulations
000874630 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000874630 588__ $$aDataset connected to CrossRef
000874630 7001_ $$0P:(DE-HGF)0$$aCondorelli, Marcello$$b1
000874630 7001_ $$0P:(DE-HGF)0$$aCompagnini, Giuseppe$$b2
000874630 7001_ $$0P:(DE-HGF)0$$aLolicato, Fabio$$b3
000874630 7001_ $$0P:(DE-HGF)0$$aMilardi, Danilo$$b4
000874630 7001_ $$0P:(DE-HGF)0$$aDo, Trang Nhu$$b5
000874630 7001_ $$0P:(DE-HGF)0$$aKarttunen, Mikko$$b6
000874630 7001_ $$0P:(DE-HGF)0$$aPannuzzo, Martina$$b7
000874630 7001_ $$0P:(DE-HGF)0$$aRamamoorthy, Ayyalusamy$$b8
000874630 7001_ $$0P:(DE-HGF)0$$aFraternali, Franca$$b9
000874630 7001_ $$0P:(DE-HGF)0$$aCollu, Francesca$$b10
000874630 7001_ $$0P:(DE-HGF)0$$aRezaei, Human$$b11
000874630 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b12$$ufzj
000874630 7001_ $$00000-0002-7123-5347$$aRaudino, Antonio$$b13$$eCorresponding author
000874630 773__ $$0PERI:(DE-600)1398349-0$$a10.1007/s00249-020-01424-1$$gVol. 49, no. 2, p. 175 - 191$$n2$$p175 - 191$$tEuropean biophysics journal$$v49$$x1432-1017$$y2020
000874630 8564_ $$uhttps://juser.fz-juelich.de/record/874630/files/Autorenmanuskript%20Symmetry-breaking%20transitions%20in%20the%20early%20steps%20of%20protein%20self-assembly.pdf$$yPublished on 2020-03-02. Available in OpenAccess from 2021-03-02.$$zStatID:(DE-HGF)0510
000874630 8564_ $$uhttps://juser.fz-juelich.de/record/874630/files/Symmetry-breaking%20transitions%20in%20the%20early%20steps%20of%20protein%20self-assembly.pdf$$yRestricted
000874630 8564_ $$uhttps://juser.fz-juelich.de/record/874630/files/Autorenmanuskript%20Symmetry-breaking%20transitions%20in%20the%20early%20steps%20of%20protein%20self-assembly.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-03-02. Available in OpenAccess from 2021-03-02.$$zStatID:(DE-HGF)0510
000874630 8564_ $$uhttps://juser.fz-juelich.de/record/874630/files/Symmetry-breaking%20transitions%20in%20the%20early%20steps%20of%20protein%20self-assembly.pdf?subformat=pdfa$$xpdfa$$yRestricted
000874630 909CO $$ooai:juser.fz-juelich.de:874630$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874630 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b12$$kFZJ
000874630 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000874630 9141_ $$y2020
000874630 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874630 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000874630 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874630 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000874630 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR BIOPHYS J BIOPHY : 2017
000874630 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874630 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874630 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874630 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874630 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874630 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874630 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874630 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874630 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874630 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874630 920__ $$lyes
000874630 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000874630 980__ $$ajournal
000874630 980__ $$aVDB
000874630 980__ $$aUNRESTRICTED
000874630 980__ $$aI:(DE-Juel1)IBI-7-20200312
000874630 9801_ $$aFullTexts