000874642 001__ 874642
000874642 005__ 20220930130233.0
000874642 0247_ $$2doi$$a10.1002/pssr.202000054
000874642 0247_ $$2ISSN$$a1862-6254
000874642 0247_ $$2ISSN$$a1862-6270
000874642 0247_ $$2Handle$$a2128/25039
000874642 0247_ $$2WOS$$aWOS:000520715600001
000874642 037__ $$aFZJ-2020-01561
000874642 082__ $$a530
000874642 1001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b0$$eCorresponding author$$ufzj
000874642 245__ $$aAtomic‐scale interface structure in domain matching epitaxial BaBiO$_{3}$ thin films grown on SrTiO$_{3}$ substrates
000874642 260__ $$aWeinheim$$bWiley-VCH$$c2020
000874642 3367_ $$2DRIVER$$aarticle
000874642 3367_ $$2DataCite$$aOutput Types/Journal article
000874642 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591707978_23745
000874642 3367_ $$2BibTeX$$aARTICLE
000874642 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874642 3367_ $$00$$2EndNote$$aJournal Article
000874642 520__ $$aThe electronic structures of BaBiO3 (BBO) thin films grown on SrTiO3 substrates are found to be thickness dependent. The origin of this behavior remains under debate and has been suggested to be attributed to the structural and compositional modifications at the BBO/SrTiO3 interface during the first stage of film growth. Though a wetting layer with thickness of ≈1 nm has been experimentally identified at the interface, details on the microstructures of such a layer and their effect on the subsequent film growth are lacking so far, particularly at the atomic scale. Herein, atomic‐resolution scanning transmission electron microscopy is used to study the interface structure of a 30 nm‐thick BBO film grown on an Nb‐doped SrTiO3 (STO) substrate through domain matching epitaxy. An interfacial δ‐Bi2O3 (BO)‐like phase with fluorite structure is identified, showing a layer‐by‐layer spacing of ≈3.2 Å along the growth direction. The orientation relationship between the BO‐like phase and surrounding perovskites (P) is found to be <001>BO||<001>P and <110>BO||<100>P. The presence of the BO‐like phase results in two types of interfaces, i.e., a coherent BO/STO and a semicoherent BBO/BO interface. Thickness variations are observed in the BO‐like layer, resulting in the formation of antiphase domains in the BBO films.
000874642 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000874642 588__ $$aDataset connected to CrossRef
000874642 7001_ $$0P:(DE-HGF)0$$aZapf, Michael$$b1
000874642 7001_ $$0P:(DE-HGF)0$$aStübinger, Martin$$b2
000874642 7001_ $$0P:(DE-HGF)0$$aKamp, Martin$$b3
000874642 7001_ $$0P:(DE-HGF)0$$aSing, Michael$$b4
000874642 7001_ $$0P:(DE-HGF)0$$aClaessen, Ralph$$b5
000874642 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b6$$ufzj
000874642 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.202000054$$gp. pssr.202000054$$n6$$p2000054 -$$tPhysica status solidi / Rapid research letters Rapid research letters [...]$$v14$$x1862-6270$$y2020
000874642 8564_ $$uhttps://juser.fz-juelich.de/record/874642/files/pssr.202000054.pdf$$yOpenAccess
000874642 8564_ $$uhttps://juser.fz-juelich.de/record/874642/files/pssr.202000054.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874642 8767_ $$92020-03-12$$d2020-03-23$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$ppssr.202000054
000874642 909CO $$ooai:juser.fz-juelich.de:874642$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000874642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b0$$kFZJ
000874642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b6$$kFZJ
000874642 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000874642 9141_ $$y2020
000874642 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874642 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874642 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2017
000874642 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000874642 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874642 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874642 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874642 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874642 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874642 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874642 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874642 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874642 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874642 920__ $$lyes
000874642 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000874642 980__ $$ajournal
000874642 980__ $$aVDB
000874642 980__ $$aUNRESTRICTED
000874642 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000874642 980__ $$aAPC
000874642 9801_ $$aAPC
000874642 9801_ $$aFullTexts