000874645 001__ 874645
000874645 005__ 20220930130233.0
000874645 0247_ $$2doi$$a10.1364/OME.388913
000874645 0247_ $$2Handle$$a2128/24834
000874645 0247_ $$2WOS$$aWOS:000530888200014
000874645 037__ $$aFZJ-2020-01564
000874645 082__ $$a620
000874645 1001_ $$0P:(DE-Juel1)164287$$aBorghardt, Sven$$b0
000874645 245__ $$aRadially polarized light beams from spin-forbidden dark excitons and trions in monolayer WSe 2
000874645 260__ $$aWashington, DC$$bOSA$$c2020
000874645 3367_ $$2DRIVER$$aarticle
000874645 3367_ $$2DataCite$$aOutput Types/Journal article
000874645 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589200149_16101
000874645 3367_ $$2BibTeX$$aARTICLE
000874645 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874645 3367_ $$00$$2EndNote$$aJournal Article
000874645 520__ $$aThe rich optical properties of transition metal dichalcogenide monolayers (TMD-MLs) render these materials promising candidates for the design of new optoelectronic devices. Despite the large number of excitonic complexes in TMD-MLs, the main focus has been placed on optically bright neutral excitons. Spin-forbidden dark excitonic complexes have been addressed for basic science purposes, but not for applications. We report on spin-forbidden dark excitonic complexes in ML WSe2 as an ideal system for the facile generation of radially polarized light beams. Furthermore, the spatially resolved polarization of photoluminescence beams can be exploited for basic research on excitons in two-dimensional materials.
000874645 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000874645 588__ $$aDataset connected to CrossRef
000874645 7001_ $$0P:(DE-Juel1)167238$$aSonntag, Jens$$b1
000874645 7001_ $$0P:(DE-Juel1)167206$$aTu, Jhih-Sian$$b2
000874645 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b3
000874645 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b4
000874645 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b5
000874645 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b6
000874645 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b7$$eCorresponding author
000874645 773__ $$0PERI:(DE-600)2619914-2$$a10.1364/OME.388913$$gVol. 10, no. 5, p. 1273 -$$n5$$p1273 -$$tOptical materials express$$v10$$x2159-3930$$y2020
000874645 8564_ $$uhttps://juser.fz-juelich.de/record/874645/files/Invoice_1269585.pdf
000874645 8564_ $$uhttps://juser.fz-juelich.de/record/874645/files/Invoice_1269585.pdf?subformat=pdfa$$xpdfa
000874645 8564_ $$uhttps://juser.fz-juelich.de/record/874645/files/ome-10-5-1273.pdf$$yOpenAccess
000874645 8564_ $$uhttps://juser.fz-juelich.de/record/874645/files/ome-10-5-1273.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874645 8767_ $$81269585$$92020-03-19$$d2020-03-25$$eAPC$$jZahlung erfolgt$$p388913$$zUSD 1597,- nicht Fonds, weil Copyright transfer, Belegnr. 1200151585
000874645 909CO $$ooai:juser.fz-juelich.de:874645$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000874645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164287$$aForschungszentrum Jülich$$b0$$kFZJ
000874645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167238$$aForschungszentrum Jülich$$b1$$kFZJ
000874645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167206$$aForschungszentrum Jülich$$b2$$kFZJ
000874645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b5$$kFZJ
000874645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b6$$kFZJ
000874645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b7$$kFZJ
000874645 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000874645 9141_ $$y2020
000874645 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874645 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000874645 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPT MATER EXPRESS : 2017
000874645 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874645 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874645 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874645 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874645 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874645 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874645 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000874645 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874645 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874645 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874645 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000874645 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000874645 9201_ $$0I:(DE-Juel1)HNF-20170116$$kHNF$$lHelmholtz - Nanofacility$$x2
000874645 980__ $$ajournal
000874645 980__ $$aVDB
000874645 980__ $$aUNRESTRICTED
000874645 980__ $$aI:(DE-Juel1)PGI-9-20110106
000874645 980__ $$aI:(DE-82)080009_20140620
000874645 980__ $$aI:(DE-Juel1)HNF-20170116
000874645 980__ $$aAPC
000874645 9801_ $$aAPC
000874645 9801_ $$aFullTexts