Home > Publications database > Radially polarized light beams from spin-forbidden dark excitons and trions in monolayer WSe 2 > print |
001 | 874645 | ||
005 | 20220930130233.0 | ||
024 | 7 | _ | |a 10.1364/OME.388913 |2 doi |
024 | 7 | _ | |a 2128/24834 |2 Handle |
024 | 7 | _ | |a WOS:000530888200014 |2 WOS |
037 | _ | _ | |a FZJ-2020-01564 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Borghardt, Sven |0 P:(DE-Juel1)164287 |b 0 |
245 | _ | _ | |a Radially polarized light beams from spin-forbidden dark excitons and trions in monolayer WSe 2 |
260 | _ | _ | |a Washington, DC |c 2020 |b OSA |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1589200149_16101 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The rich optical properties of transition metal dichalcogenide monolayers (TMD-MLs) render these materials promising candidates for the design of new optoelectronic devices. Despite the large number of excitonic complexes in TMD-MLs, the main focus has been placed on optically bright neutral excitons. Spin-forbidden dark excitonic complexes have been addressed for basic science purposes, but not for applications. We report on spin-forbidden dark excitonic complexes in ML WSe2 as an ideal system for the facile generation of radially polarized light beams. Furthermore, the spatially resolved polarization of photoluminescence beams can be exploited for basic research on excitons in two-dimensional materials. |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Sonntag, Jens |0 P:(DE-Juel1)167238 |b 1 |
700 | 1 | _ | |a Tu, Jhih-Sian |0 P:(DE-Juel1)167206 |b 2 |
700 | 1 | _ | |a Taniguchi, Takashi |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Watanabe, Kenji |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Beschoten, Bernd |0 P:(DE-Juel1)178028 |b 5 |
700 | 1 | _ | |a Stampfer, Christoph |0 P:(DE-Juel1)180322 |b 6 |
700 | 1 | _ | |a Kardynal, Beata |0 P:(DE-Juel1)145316 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1364/OME.388913 |g Vol. 10, no. 5, p. 1273 - |0 PERI:(DE-600)2619914-2 |n 5 |p 1273 - |t Optical materials express |v 10 |y 2020 |x 2159-3930 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/874645/files/Invoice_1269585.pdf |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/874645/files/Invoice_1269585.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/874645/files/ome-10-5-1273.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/874645/files/ome-10-5-1273.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:874645 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)164287 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167238 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)167206 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)178028 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)180322 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)145316 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b OPT MATER EXPRESS : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)HNF-20170116 |k HNF |l Helmholtz - Nanofacility |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)HNF-20170116 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|