000874647 001__ 874647
000874647 005__ 20210130004735.0
000874647 0247_ $$2doi$$a10.1038/s41598-020-61242-5
000874647 0247_ $$2Handle$$a2128/24585
000874647 0247_ $$2altmetric$$aaltmetric:77391316
000874647 0247_ $$2pmid$$apmid:32165652
000874647 0247_ $$2WOS$$aWOS:000520964500026
000874647 037__ $$aFZJ-2020-01566
000874647 041__ $$aEnglish
000874647 082__ $$a600
000874647 1001_ $$0P:(DE-HGF)0$$aPora, Anne$$b0$$eCorresponding author
000874647 245__ $$aRegulation of keratin network dynamics by the mechanical properties of the environment in migrating cells
000874647 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2020
000874647 3367_ $$2DRIVER$$aarticle
000874647 3367_ $$2DataCite$$aOutput Types/Journal article
000874647 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1584968715_3401
000874647 3367_ $$2BibTeX$$aARTICLE
000874647 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874647 3367_ $$00$$2EndNote$$aJournal Article
000874647 520__ $$aKeratin intermediate filaments provide mechanical resilience for epithelia. They are nevertheless highly dynamic and turn over continuously, even in sessile keratinocytes. The aim of this study was to characterize and understand how the dynamic behavior of the keratin cytoskeleton is integrated in migrating cells. By imaging human primary keratinocytes producing fluorescent reporters and by using standardized image analysis we detect inward-directed keratin flow with highest rates in the cell periphery. The keratin flow correlates with speed and trajectory of migration. Changes in fibronectin-coating density and substrate stiffness induces concordant changes in migration speed and keratin flow. When keratinocytes are pseudo-confined on stripes, migration speed and keratin flow are reduced affecting the latter disproportionately. The regulation of keratin flow is linked to the regulation of actin flow. Local speed and direction of keratin and actin flow are very similar in migrating keratinocytes with keratin flow lagging behind actin flow. Conversely, reduced actin flow in areas of high keratin density indicates an inhibitory function of keratins on actin dynamics. Together, we propose that keratins enhance persistence of migration by directing actin dynamics and that the interplay of keratin and actin dynamics is modulated by matrix adhesions.
000874647 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000874647 588__ $$aDataset connected to CrossRef
000874647 7001_ $$00000-0001-7363-3261$$aYoon, Sungjun$$b1
000874647 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b2$$ufzj
000874647 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b3$$ufzj
000874647 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b4
000874647 7001_ $$00000-0003-1403-5880$$aWindoffer, Reinhard$$b5
000874647 7001_ $$00000-0002-5519-7379$$aLeube, Rudolf E.$$b6$$eCorresponding author
000874647 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-61242-5$$gVol. 10, no. 1, p. 4574$$n1$$p4574$$tScientific reports$$v10$$x2045-2322$$y2020
000874647 8564_ $$uhttps://juser.fz-juelich.de/record/874647/files/s41598-020-61242-5.pdf$$yOpenAccess
000874647 8564_ $$uhttps://juser.fz-juelich.de/record/874647/files/s41598-020-61242-5.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874647 909CO $$ooai:juser.fz-juelich.de:874647$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b2$$kFZJ
000874647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b3$$kFZJ
000874647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b4$$kFZJ
000874647 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000874647 9141_ $$y2020
000874647 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874647 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874647 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874647 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874647 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000874647 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000874647 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874647 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874647 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874647 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874647 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874647 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874647 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874647 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874647 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874647 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874647 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874647 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000874647 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874647 920__ $$lyes
000874647 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0
000874647 980__ $$ajournal
000874647 980__ $$aVDB
000874647 980__ $$aUNRESTRICTED
000874647 980__ $$aI:(DE-Juel1)IBI-2-20200312
000874647 9801_ $$aFullTexts