000874655 001__ 874655
000874655 005__ 20210130004735.0
000874655 0247_ $$2doi$$a10.1016/j.brs.2020.01.016
000874655 0247_ $$2ISSN$$a1876-4754
000874655 0247_ $$2ISSN$$a1935-861X
000874655 0247_ $$2Handle$$a2128/24588
000874655 0247_ $$2altmetric$$aaltmetric:78545025
000874655 0247_ $$2pmid$$apmid:32289686
000874655 0247_ $$2WOS$$aWOS:000533522600019
000874655 037__ $$aFZJ-2020-01571
000874655 082__ $$a610
000874655 1001_ $$0P:(DE-Juel1)168559$$aTscherpel, Caroline$$b0
000874655 245__ $$aThe differential roles of contralesional frontoparietal areas in cortical reorganization after stroke
000874655 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000874655 3367_ $$2DRIVER$$aarticle
000874655 3367_ $$2DataCite$$aOutput Types/Journal article
000874655 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585039864_3401
000874655 3367_ $$2BibTeX$$aARTICLE
000874655 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874655 3367_ $$00$$2EndNote$$aJournal Article
000874655 520__ $$aBackgroundStudies examining the contribution of contralesional brain regions to motor recovery after stroke have revealed conflicting results comprising both supporting and disturbing influences. Especially the relevance of contralesional brain regions beyond primary motor cortex (M1) has rarely been studied, particularly concerning the temporal dynamics post-stroke.MethodsWe, therefore, used online transcranial magnetic stimulation (TMS) interference to longitudinally assess the role of contralesional (right) frontoparietal areas for recovery of hand motor function after left hemispheric stroke: contralesional M1, contralesional dorsal premotor cortex (dPMC), and contralesional anterior intraparietal sulcus (IPS). Fourteen stroke patients and sixteen age-matched healthy subjects performed motor tasks of varying complexity with their (paretic) right hand. Motor performance was quantified using three-dimensional kinematic data. All patients were assessed twice, (i) in the first week, and (ii) after more than three months post-stroke.ResultsWhile we did not observe a significant effect of TMS interference on movement kinematics following the stimulation of contralesional M1 and dPMC in the first week post-stroke, we found improvements of motor performance upon interference with contralesional IPS across motor tasks early after stroke, an effect that persisted into the later phase. By contrast, for dPMC, TMS-induced deterioration of motor performance was only evident three months post-stroke, suggesting that a supportive role of contralesional premotor cortex might evolve with reorganization.ConclusionWe here highlight time-sensitive and region-specific effects of contralesional frontoparietal areas after left hemisphere stroke, which may influence on neuromodulation regimes aiming at supporting recovery of motor function post-stroke.
000874655 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000874655 588__ $$aDataset connected to CrossRef
000874655 7001_ $$0P:(DE-Juel1)142144$$aHensel, Lukas$$b1
000874655 7001_ $$0P:(DE-HGF)0$$aLemberg, Katharina$$b2
000874655 7001_ $$0P:(DE-HGF)0$$aVollmer, Mattias$$b3
000874655 7001_ $$0P:(DE-HGF)0$$aVolz, Lukas J.$$b4
000874655 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b5$$ufzj
000874655 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b6$$eCorresponding author
000874655 773__ $$0PERI:(DE-600)2404774-0$$a10.1016/j.brs.2020.01.016$$gVol. 13, no. 3, p. 614 - 624$$n3$$p614 - 624$$tBrain stimulation$$v13$$x1935-861X$$y2020
000874655 8564_ $$uhttps://juser.fz-juelich.de/record/874655/files/Tscherpel_2020_Brain%20Stim_The%20differential%20roles%20of%20contralesional%20frontoparietal%20areas%20in%20cortical%20reorganization%20after%20stroke.pdf$$yOpenAccess
000874655 8564_ $$uhttps://juser.fz-juelich.de/record/874655/files/Tscherpel_2020_Brain%20Stim_The%20differential%20roles%20of%20contralesional%20frontoparietal%20areas%20in%20cortical%20reorganization%20after%20stroke.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874655 909CO $$ooai:juser.fz-juelich.de:874655$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000874655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ
000874655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b6$$kFZJ
000874655 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000874655 9141_ $$y2020
000874655 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874655 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874655 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000874655 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STIMUL : 2017
000874655 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874655 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874655 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874655 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRAIN STIMUL : 2017
000874655 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000874655 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874655 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000874655 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874655 920__ $$lyes
000874655 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000874655 980__ $$ajournal
000874655 980__ $$aVDB
000874655 980__ $$aUNRESTRICTED
000874655 980__ $$aI:(DE-Juel1)INM-3-20090406
000874655 9801_ $$aFullTexts