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The interrelation of sleep and mental and physical
health is anchored in grey-matter neuroanatomy
and under genetic control
Masoud Tahmasian 1, Fateme Samea1, Habibolah Khazaie2, Mojtaba Zarei1,

Shahrzad Kharabian Masouleh 3,4, Felix Hoffstaedter3,4, Julia Camilleri3,4, Peter Kochunov5,

B. T. Thomas Yeo6,7,8,9, Simon Bodo Eickhoff3,4 & Sofie Louise Valk3,4✉

Humans need about seven to nine hours of sleep per night. Sleep habits are heritable,

associated with brain function and structure, and intrinsically related to well-being, mental,

and physical health. However, the biological basis of the interplay of sleep and health is

incompletely understood. Here we show, by combining neuroimaging and behavioral genetic

approaches in two independent large-scale datasets (HCP (n= 1106), age range: 22–37, eNKI

(n= 783), age range: 12–85), that sleep, mental, and physical health have a shared neuro-

biological basis in grey matter anatomy; and that these relationships are driven by shared

genetic factors. Though local associations between sleep and cortical thickness were

inconsistent across samples, we identified two robust latent components, highlighting the

multivariate interdigitation of sleep, intelligence, BMI, depression, and macroscale cortical

structure. Our observations provide a system-level perspective on the interrelation of sleep,

mental, and physical conditions, anchored in grey-matter neuroanatomy.
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S
leep plays an active role in providing adaptive physiological
functions1, consolidating and retaining new memories2,
metabolite clearance3, hormones’ secretion4, and synaptic

hemostasis5. The National Sleep Foundation suggests 7–9 h
of sleep per night for adults (18–64) and 7–8 h for older adults
(65+). For school aged children (6–13 years) this is 9–11 h, and
for teenagers 8–10 h6. However, people in modern societies are
suffering from inadequate sleep and its consequences6. Sleep loss
is associated with impairment in cognitive performance, motor
vehicle accidents and poor quality of life7,8; and contributes to
heightened socioeconomic burden9,10. Beyond the quantity of
sleep (sleep duration), quality of sleep includes sleep onset latency
(i.e., time between going to bed and falling asleep), sleep efficiency
(i.e., the percentage of time in bed during which someone is
asleep), sleep disturbances, use of sleeping medication, and day-
time dysfunction, all interacting with individual health and well-
being11,12. Of note, it has been revealed that poor sleep quality is
associated with higher rate of depressive symptoms in healthy
subjects13,14; and sleep disturbances are common in mood
(e.g., major depression) and cognitive disorders15,16.

Individual differences in sleep behaviors are heritable17–19; and
various genetic, metabolic, behavioral, and psychological risk fac-
tors have been suggested for the development and maintenance of
poor sleep quality and sleep disorders20–22. For example, genome
wide association studies have associated insomnia disorder to
structure of the striatum, hypothalamus, and claustrum, where
gene expression profiles show association with the genetic risk
profile of such individuals23,24. Moreover, sleep can have a bidir-
ectional relation with health. Not only is sleep disturbance linked
with hypertension, diabetes, and obesity25,26, but also depressive
symptoms, physical illness, and fatigue were reported as associated
factors for both poor sleep quality and short sleep duration27,28.
A meta-analysis reported that insomnia disorder is associated with
alterations in widespread brain structure and function29. In addi-
tion, other neuroimaging meta-analyses have implicated structural
and functional abnormalities in the hippocampus, amygdala, and
insula in patients with sleep apnea30 and have indicated convergent
functional brain alterations in the inferior parietal cortex and
superior parietal lobule, following acute sleep deprivation31.
Moreover, white matter integrity underlying prefrontal areas has
been associated with sleep duration and sleep quality32–34. Lastly,
lower prefrontal gray matter volume has been associated with
greater sleep fragmentation in older individuals35.

Importantly, it has been demonstrated that macroscale gray
matter neuroanatomy is heritable36–38, indicating part of the var-
iance in brain structure can be related to additive genetic effects.
Indeed, genetic factors influence cortical thickness in a systematic
fashion where both functional and geometric constraints influence
genetic correlation between and within brain systems39,40. Recent
studies have indicated that phenotypic correlation between cortical
thickness and intelligence, as well as BMI, is driven by additive
genetic factors41–43 suggesting a shared genetic basis of cortical
thickness and non-brain traits. This raises the question whether the
interrelation of sleep, mental, and physical health can be linked to
the shared neurobiological mechanisms; and whether these rela-
tionships are driven by shared genetic factors.

To answer this question, we combined structural neuroimaging
data from two independent samples: the Human Connectome
Project (HCP unrelated sample n= 424) and the enhanced NKI
Rockland sample (eNKI: n= 783) to explore whether the inter-
relation of sleep, mental, and physical health can be linked to
a shared macroscale neurobiological signature. The HCP sample
consists of young adults only, whereas the eNKI sample consists
of adolescents, younger and older adults, enabling us to evaluate
the generalizability of the interrelation of sleep, health and local
brain structure. We conducted genetic correlation analysis in the

complete HCP sample (n= 1105), which included twins and sib-
lings. Sleep variation was assessed using the Pittsburg Sleep Quality
Index (PSQI)11, a widely used questionnaire summarizing self-
reported indices of sleep. Our main measures of interest were sleep
quantity (self-reported sleep duration) and global sleep quality
(total PSQI) score, as previous work has associated these factors
with brain structure44,45 and genetic variation46. Based on previous
literature7,8,25–28 and data-driven phenotypic correlations in the
HCP sample, we selected BMI, intelligence and depression scores
to evaluate the potential existence of a shared neuroanatomical
basis of sleep and mental and physical aptitudes. In the HCP
sample, intelligence was summarized as Total Cognitive Score,
based on the NIH Toolbox Cognition47, whereas in the eNKI
sample, intelligence was measured using the Wechsler Abbreviated
Scale of Intelligence (WASI-II)48. Depression was measured using
the ASR depression DSM-oriented scale for Ages 18–5949 in the
HCP sample. In the eNKI sample the Beck Depression Inventory
(BDI–II) was used. BMI was calculated at weight/squared (height)
in both datasets. Based on previous knowledge, we expected to
observe phenotypic relationships between sleep duration/quality
and markers of mental and physical health. Moreover, we expected
to observe a phenotypic relation between sleep and local gray
matter structure.

Our analyses revealed a phenotypic relationship between sleep
and depression, BMI, and intelligence in both the HCP and the
eNKI sample. Subsequently, we demonstrated our sleep markers,
depression, BMI, and intelligence were heritable and we observed
a genetic correlation between sleep quantity and quality, BMI, and
intelligence in the twin-based HCP sample, indicating that sleep
hygiene displays pleiotropy with these factors in the mentioned
sample. Analysis of heritability and genetic correlation were per-
formed with maximum likelihood variance-decomposition meth-
ods using Sequential Oligogenic Linkage Analysis Routines (www.
solar-eclipse-genetics.org; Solar Eclipse 8.4.0.). Heritability (h2) is
the total additive genetic variance and genetic (ρg) correlations
were estimated using bivariate polygenic analysis. Using an atlas-
based approach to summarize cortical thickness50, we observed
local associations between sleep duration and cortical structure in
both samples which were, in part, driven by additive genetic
factors. Post-hoc analysis indicated that variance in intelligence
and BMI also related to thickness in areas associated with sleep
duration. Subsequently, based on our observation that sleep relates
to BMI, intelligence, and depression, as well as to cortical thick-
ness, we performed partial least squares (PLS) analysis, in order to
identify latent relationships between these factors. PLS is a mul-
tivariate data-driven approach, enabling simultaneous linking of
behavioral measures to brain structure. We identified two robust
latent factors, spanning distinct neurocognitive dimensions. Using
the twin-structure of HCP, we observed these factors were heri-
table and their relation driven by shared genetic effects. Taken
together, the current study highlights the interrelation of sleep,
mental and physical health, which is reflected by shared neuro-
biological signatures.

Results
Data samples. We studied two independent samples from
openly-shared neuroimaging repositories: HCP and eNKI. HCP
(http://www.humanconnectome.org/) comprised data from 1105
individuals (599 females), 285 MZ twins, 170 DZ twins, and
650 singletons, with mean age 28.8 years (SD= 3.7, range=
22–37). For phenotypic analysis, we selected unrelated indivi-
duals, resulting in a sample of 424 (228 females) individuals with
a mean age of 28.6 years (SD= 3.7, range= 22–36). Our second
sample was based on the eNKI sample, made available by the
Nathan-Kline Institute (NKY, NY, USA)51. This sample consisted

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0892-6

2 COMMUNICATIONS BIOLOGY |           (2020) 3:171 | https://doi.org/10.1038/s42003-020-0892-6 | www.nature.com/commsbio



of 783 (487 females) individuals with mean age of 41.2 years
(SD= 20.3, range= 12–85), enabling us to identify life-span
relations between sleep, brain structure and behavior. Details on
the sample characteristics can be found in the Methods section.

Relation between sleep, mental and physical health. First, we
sought to evaluate whether our measures of mental and physical
status are related to sleep quantity and quality. Here, we corre-
lated sleep duration and global sleep quality to phenotypic var-
iation in cognition, mental, and physical health (for selection of
markers see Supplementary Table 1). This data-driven analysis in
the HCP phenotypic data revealed that cognitive, mental and
physical phenotypic variation have a strong relation to variation
in sleep (Supplementary Table 2 and Supplementary Table 3).
Given the marked role of both depression and BMI on both sleep
duration and global sleep quality, we selected these as phenotypes
of interest for further analyses. As several cognitive factors were
related to sleep duration and sleep quality, we selected general
intelligence in this study, as this marker has been shown to be
highly heritable and consistently relates to brain structure42. Next,
we demonstrated that depression, IQ, and BMI have moderate
phenotypic inter-correlations in unrelated HCP, eNKI, as well as
full HCP samples (Supplementary Table 4). Evaluating the rela-
tion between sleep and our selected markers in eNKI, in addition
to HCP, we observed that, sleep duration had a consistent
negative phenotypic relation to both BMI and depression, and a
positive relation to IQ (Table 1).

Taking advantage of the pedigree-structure of the full HCP
sample, we observed that depression, IQ, and BMI were all
heritable (Table 1); and we observed a negative genetic correlation
between BMI and IQ (ρg=−0.27, p < 0.0001) (Supplementary
Table 4). Moreover, sleep duration was heritable (h2= 0.24, p <
0.001), and phenotypic correlations were mirrored by genetic
correlations. We observed sleep duration to show a positive
genetic correlation with IQ (ρg= 0.42, p < 0.0001), but negative
with BMI (ρg=−0.33, p < 0.005) (Table 1). Depression showed a
weak environmental correlation with sleep duration (ρe=−0.16,
p < 0.01).

Global sleep quality showed comparable relations to depression,
IQ and BMI, with strong phenotypic correlation between poor
sleep quality (higher total PSQI score) and higher depression and
BMI scores, as well as between poor sleep quality and lower IQ
across samples (Table 1). Global sleep quaity was also influenced
by additive genetic effects (h2= 0.12, p < 0.05), but less so than

sleep duration. Phenotypic correlations were paralleled by genetic
correlations, were poor sleep quality were genetically correlated
with lower IQ (ρg=−0.59, p < 0.0001) and higher BMI (ρg= 0.41,
p < 0.025). Again, depression only showed environmental correla-
tion with global sleep quality (ρe= 0.38, p < 0.0001) (Table 1).

Phenotypic correlation between sleep and brain structure in
two independent samples. Next, we evaluated the phenotypic
relation between sleep indices (global sleep quality and sleep
duration) and cortical thickness in both the unrelated subsample
from HCP (n= 424) and eNKI (n= 783). Behaviorally, we
observed a strong negative correlation (Spearman r=−0.51
[−0.59 −0.44], p < 0.0001) between global sleep quality and sleep
duration (Fig. 1a). Correlation of sleep indices with brain struc-
ture demonstrated a negative link between left superior frontal
thickness (area 6d2 and pre-supplementary motor area) and sleep
duration (Spearman r=−0.1, FDR q < 0.02, Fig. 1b), that
remained significant when controlling for self-reported depressive
symptoms, as well as intake of sleep medications, intelligence, and
BMI. Global sleep quality did not relate to local variations in
cortical thickness (Fig. 1c). When evaluating the relationship in
the complete HCP sample, including twins and siblings, we
observed only a trending relation between sleep duration and
cortical thickness (Supplementary Fig. 1).

In eNKI, we replicated the negative behavioral correlation
between sleep duration and global sleep quality (Spearman r=
−0.53 [−0.58 −0.47], p < 0.0001) (Fig. 1d). Though we again
found no relation between global sleep quality and cortical brain
structure (Fig. 1f), sleep duration showed a positive link between
bilateral inferior temporal regions (left: Spearman r= 0.13, FDR
q < 0.02, right: Spearman r= 0.12, FDR q < 0.02) and right
occipital cortex (Spearman r= 0.14, FDR q < 0.02) (Fig. 1e).
Findings remained significant when controlling for self-reported
depressive symptoms, as well as intake of sleep medications,
intelligence, and BMI.

In both samples, most individuals (>65%) slept less than the
recommended 7–9 h (Supplementary Table 5) and only a small
proportion of both samples (<9%) slept 9 h or more. Post-hoc
analysis evaluating the linear relationship between short and long
sleep duration and local brain structure replicated overall effects
between sleep duration and local brain structure in individuals
who reported to sleep less than 9h per night (short-to-normal
sleep duration), but not in individuals sleeping more than 7h per
night (normal-to-long sleep duration) (Supplementary Fig. 2). As

Table 1 Phenotypic and genetic correlations between sleep and depression, BMI, and IQ.

Sleep duration (h2= 0.24 ± 0.06)

Sample Depression (h2= 0.24 ± 0.06) BMI (h2= 0.68 ± 0.04) IQ (h2= 0.66 ± 0.04)

HCP (unrelated sample) (n = 419) −0.09 [−0.19 0.00], p = 0.06 (n= 424) −0.11 [−0.21 −0.02], p < 0.025* (n= 418) 0.11 [0.01 0.19], p < 0.05*
eNKI (n= 782) −0.16 [−0.24 −0.09], p < 0.001** (n= 757) −0.17 [−0.24 −0.09], p < 0.001** (n= 783) 0.11 [0.04 0.18], p < 0.005*
HCP (total sample) (n= 1105) −0.07 [−0.13 −0.02], p < 0.025* (n= 1112) −0.14 [−0.19 −0.08],

p < 0.0001**
(n= 1096) 0.09 [0.03 0.15], p < 0.005*

Genetic correlation (HCP) 0.17(0.20), p > 0.1 −0.33 (0.11), p < 0.005* 0.42 (0.11), p < 0.0001**
Environmental correlation (HCP) −0.16(0.06), p < 0.01* 0.01 (0.07), p > 0.1 0.19 (0.06), p < 0.003**

Global sleep quality (h2= 0.12 ± 0.06)

Sample Depression BMI IQ

HCP (unrelated sample) (n= 419) 0.37 [0.29 0.45],
p < 0.0001**

(n= 424) 0.14 [0.04 0.23],
p < 0.005*

(n= 418) −0.07 [−0.16 0.03], p > 0.1

eNKI (n= 782) 0.31 [0.25 0.38],
p < 0.0001 **

(n= 757) 0.09 [0.02 0.17],
p < 0.01*

(n= 419) −0.09 [−0.16 −0.02],
p < 0.01*

HCP (total sample) (n= 1112) 0.35 [0.30 0.40],
p < 0.0001**

(n= 1112) 0.10 [0.04 0.16],
p < 0.001**

(n= 1096) −0.10 [−0.16 −0.04],
p < 0.002*

Genetic correlation (HCP) 0.32(0.26), p > 0.1 0.41 (0.16), p < 0.025* −0.59 (0.20), p < 0.0001**
Environmental correlation (HCP) 0.38(0.05), p < 0.0001** 0.03 (0.07), p > 0.1 0.17 (0.06), p < 0.007**

We performed phenotypic (HCP unrelated sample, eNKI sample, HCP total sample) and genetic correlation (HCP total sample) analysis of the association between sleep duration and global sleep quality

on the one hand, and depression, BMI, and IQ on the other, including 95% confidence intervals. Asterisks (**) indicates FDR q < 0.05 and asterisk (*) indicates association at trend−level p < 0.05. Sample

sizes are reported for each analysis.
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the eNKI sample had a broad age range from 12 to 85 years of age,
we performed several stability analyses to evaluate the relationship
between sleep duration and brain structure in youths, adults and
elderly populations (Supplementary Table 6). Here, we did not
observe differential sleep duration effects in each sub-group, as
well as differences between age-groups (Supplementary Fig. 3).

Replication analysis of correspondence between sleep duration
and cortical thickness. As we found divergent local phenotypic
correlations between sleep duration and cortical thickness in two
large-scale independent samples, we evaluated the inconsistencies
across samples more precisely. Indeed, post-hoc analysis indi-
cated that local effects of phenotypic correlations varied strongly

Fig. 1 Patterns of phenotypic correlation between sleep duration and cortical thickness in HCP and eNKI samples. a Distribution of variables in the

unrelated HCP subsample; b, c. Phenotypic correlation of sleep duration/global sleep quality and cortical thickness; d Distribution of variables in the eNKI

sample, as well as the correlation between sleep duration and global sleep quality score; e, f Phenotypic correlation of sleep duration/global sleep quality

and cortical thickness. Red indicates a positive relationship, whereas blue indicates a negative phonotypical relationship between sleep and brain structure.

Whole-brain findings were corrected for multiple comparisons using FDR correction (q < 0.05, black outline). Significant associations between sleep

indices and brain structure have black outline, whereas trends (p < 0.01) were visualized at 60% transparency.
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in magnitude across samples in phenotypic analysis (Table 2). At
the same time, we observed a high overlap between spatial dis-
tribution of phenotypic correlations between sleep duration, but
not global sleep quality, and cortical thickness across samples and
sub-samples, indicating that the direction of sleep thickness
associations is similar across both samples (Supplementary
Table 7). This suggests that the relation between sleep and cortical
thickness might be robust at the inter-regional level rather than in
local effects only. In addition, we observed that both intelligence
and BMI related to local thickness associated with sleep duration
(Supplementary Table 8), suggesting that sleep, intelligence and
BMI are dependent on overlapping macro-anatomical structures.

Phenotypic correlations between sleep and cortical thickness
are driven by additive genetic effects. Next, we explored whether
phenotypic correlations between sleep duration and cortical
thickness were mirrored by additive genetic effects using the
twin-structure of the HCP dataset. First, we confirmed that cor-
tical thickness was heritable in this sample (Supplementary Fig. 4,
Supplementary Table 9). Second, we assessed whether phenotypic
correlations observed in Fig. 1 were driven by shared additive
genetic effects. We found that both frontal cortex (based on
HCP), as well as right occipital cortex and right inferior temporal
cortex (based on eNKI) showed a trend-level genetic correlation
(p < 0.05) with sleep duration (Table 3). Using a whole-brain
approach, we identified a negative genetic correlation between
sleep duration and bilateral frontal cortices thickness, mainly in
the bilateral superior frontal gyrus and frontal pole, areas p32 and
Fp2 (left: ρe= 0.12, p < 0.06, ρg=−0.46, FDR q < 0.025; right:
ρe= 0.15, p < 0.01, ρg=−0.46, FDR q < 0.025) (Supplementary

Fig. 1). Findings were robust when controlling for intelligence,
BMI or depression score (Supplementary Table 10). Frontal
regions showing genetic correlation with sleep in the HCP sample
did not show an association with sleep in the eNKI sample
(Supplementary Table 11). At the same time, we observed pat-
terns of genetic correlation to reflect phenotypic correlation at the
whole brain level within the HCP sample and sub-sample, and in
the eNKI sample (Supplementary Table 7). Last, though we did
not observe a genetic correlation between global sleep quality and
brain structure, we identified an environmental relation between
global sleep quality and left precentral thickness (Spearman r=
0.01, ρe= 0.22, p < 0.0002, ρg=−0.64, p < 0.0003) (Supplemen-
tary Fig. 5).

Latent relation between sleep, brain and behavior. As we
observed (1) phenotypic and (2) genetic correlations between
sleep, intelligence, BMI, and, in part, depression, as well as (3) an
inconsistent relation between sleep duration and cortical thick-
ness, we utilized a multivariate data-driven approach to evaluate
the latent relationship between sleep, intelligence, BMI and
depression on the one hand, and cortical thickness on the other
(Fig. 2). Indeed, it has been suggested multiple comparison cor-
rections in mass univariate analysis may result in missing effects
and thus inconsistencies in the results and a more comprehensive
picture of the associations could be gained by a multivariate
approach52. Here, our primary analysis sample is the eNKI
sample, as this enables us to replicate and evaluate phenotypic
and genetic correlations between latent structures using the full
HCP sample.

In the eNKI sample, we observed two latent relations between
our behavioral phenotypes and cortical thickness, controlling for
effects of age, sex and global thickness, explaining, respectively, 41%
of the shared variance (first latent component; p < 0.001, association
between behavior and brain saliencies: Spearman r= 0.38), and
25% of the shared variance (second latent component; p < 0.01,
association between behavior and brain saliencies: Spearman r=
0.29). The first component had a positive relation with both sleep
duration (Spearman r= 0.49) and intelligence (Spearman r=

Table 2 Inconsistency of associations between sleep

duration and cortical thickness across samples and

analyses.

Phenotypic correlation, Fig. 1b (HCP)

Left superior frontal gyrus p

HCP (unrelated sample) (n= 424) r = −0.19 0.00007**

eNKI (n= 783) r = −0.03 0.40

HCP (total sample) (n= 1113) r = −0.10 0.0013*

Genetic correlation (HCP) ρg = −0.27 0.035*

Environmental correlation (HCP) ρe = 0.02 0.97

Phenotypic correlation, Fig. 1e (eNKI)

Left inferior temporal cortex p

HCP (unrelated sample) (n= 424) r = 0.09 0.07

eNKI (n= 783) r = 0.13 0.0001**

HCP (total sample) (n= 1113) r = 0.04 0.14

Genetic correlation (HCP) ρg = −0.09 0.67

Environmental correlation (HCP) ρe = 0.06 0.27

Right occipital cortex p

HCP (unrelated sample) (n= 424) r = 0.07 0.13

eNKI (n= 783) r = 0.14 0.0001**

HCP (total sample) (n= 1113) r = 0.04 0.20

Genetic correlation (HCP) ρg = 0.28 0.03*

Environmental correlation (HCP) ρe = −0.08 0.19

Right inferior temporal cortex p

HCP (unrelated sample) (n= 424) r = 0.05 0.30

eNKI (n= 783) r = 0.12 0.0006**

HCP (total sample) (n= 1113) r = 0.004 0.90

Genetic correlation (HCP) ρg = 0.38 0.02*

Environmental correlation (HCP) ρe = −0.11 0.06

Cross-sample replication of FDR-corrected ROIs from phenotypic correlational analysis in Fig 1.

Asterisks (**) indicates to significant correlation (q < 0.05) and asterisk (*) indicates association

at trend-level p < 0.05. Sample sizes are reported for each analysis.

Table 3 Phenotypic associations between sleep indices and

cortical thickness are mirrored by genetic correlations.

Phenotypic correlation, Fig. 1b (HCP)

Left superior frontal gyrus p

HCP (total sample) (n= 1113) r = −0.10 0.0013*

Genetic correlation (HCP) ρg = −0.27 0.035*

Environmental correlation (HCP) ρe = 0.02 0.97

Phenotypic correlation, Fig. 1e (eNKI)

Left inferior temporal cortex p

HCP (total sample) (n= 1113) r = 0.04 0.14

Genetic correlation (HCP) ρg = −0.09 0.67

Environmental correlation (HCP) ρe = 0.06 0.27

Right occipital cortex p

HCP (total sample) (n= 1113) r = 0.04 0.20

Genetic correlation (HCP) ρg = 0.28 0.03*

Environmental correlation (HCP) ρe = −0.08 0.19

Right inferior temporal cortex p

HCP (total sample) (n= 1113) r = 0.004 0.90

Genetic correlation (HCP) ρg = 0.38 0 .02*

Environmental correlation (HCP) ρe = −0.11 0.06

Genetic and environmental correlation between sleep and thickness in FDR-corrected ROIs from

phenotypic correlational analysis in Fig. 1. Asterisks (**) indicates to significant correlation (q <

0.05) and asterisk (*) indicates association at trend-level p < 0.05.
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0.83), and a negative relation with sleep quality (Spearman r=
−0.43), BMI (Spearman r=−0.46) and depression (Spearman
r=−0.21). The brain saliency loadings were positively (bootstrap
ratio > 2) associated sensory-motor areas, as well as superior
temporal areas, and parahippocampal structures, and negatively
with lateral and medial frontal cortex, as well as inferior temporal
lobe, precuneus, and posterior parietal cortex. Further qualifying
the brain saliency, we observed that positive relations were mainly
in visual, sensorimotor and limbic functional networks, whereas
negative relations were predominantly located in the dorsal-
attention, fronto-parietal and default-mode networks. Replicating
the association in HCP using the behavioral and brain loadings,
we identified a relation between latent brain and behavioral
factors in this sample as well (component 1: Spearman r= 0.25,
p < 0.001). Moreover, both brain and behavioral latent factors
were heritable (brain saliency: h2 ± std= 0.63 ± 0.04; behavior
saliency: h2 ± std 0.76 ± 0.03) and showed genetic correlation
(ρe=−0.07 ± 0.07, p= ns, ρg= 0.38 ± 0.05, p < 0.0001). The first
brain-behavior component seems to reflect a positive-negative

axis of behavior, relating high sleep quantity to positive behaviors
whereas low sleep quality related negatively to this factor
(Fig. 2a).

The second component related positively to depression (Spear-
man r= 0.70), BMI (Spearman r= 0.50), intelligence (Spearman
r = 0.16), and reduced sleep quality (Spearman r= 0.69), and
negatively to sleep duration (Spearman r=−0.43). Positive brain
loadings (bootstrap ratio>2) were located in the left sensorimotor
areas, right precuneus, and right parietal areas. Negative loadings
(bootstrap ratio <−2) were located in left dorsolateral areas, left
mid-cingulate, right dorsolateral frontal cortex, and left anterior-
mid cingulate. Qualitative analysis revealed positive loading were
predominantly in sensorimotor, visual, dorsal attention and default
networks, whereas negative loadings were associated with the
fronto-parietal, ventral attention, limbic and default networks.
Again, we replicated this association in HCP using the behavioral
and brain loadings (Spearman r= 0.10, p < 0.002). Both brain and
behavioral saliency of the second component were heritable (brain
saliency: h2 ± std= 0.72 ± 0.03; behavior saliency: h2 ± std 0.51 ±

Fig. 2 Two latent dimensions of cortical macrostructure and components of sleep,mental, and physical health. a Bootstrap ratio of the first brain

saliency that showed significant robustness, where parcel-wise saliencies of BSR > 2 are highlighted. Red indicates a positive association whereas blue

indicates a negative association; Loadings of the individual traits (SD: Sleep duration, D: Depression, B: BMI, I: Intelligence, SQ: Sleep quality); Relative

distribution of positive(P) and negative (N) -2>BSR > 2 scores per functional networks102, and average BSR in functional networks102 (V= visual, SM=

sensorimotor, Da= dorsal-attention, Va= ventral attention, L= limbic, FP= frontopolar, DMN= default mode network); Replication of brain–behavior

saliency association in the HCP sample; and b Relation between brain and behavioral saliencies in HCP sample of the second brain saliency; Loadings of the

individual traits; Relation to functional networks102 and; Relation between brain and behavioral saliencies of second factor in the HCP sample.
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0.05) and showed genetic correlation (ρe=−0.11 ± 0.07, p= ns,
ρg= 0.22 ± 0.07, p < 0.0001). This time, sleep quality, depression,
BMI, and intelligence showed positive latent relations, but duration
had a negative relation to the behavioral saliency, suggesting that
sleep quality has both positive and negative relationships to
intelligence (Fig. 2b).

Discussion
Sleep is key for normal human functioning and associated with
brain structure and function. At the same time, individual dif-
ferences in sleeping behavior are heritable and have substantial
overlap with cognition, physical, and mental health. This raises
the question whether shared variance in sleep, intelligence, BMI,
and depression could be due to a shared relationship to macro-
scale gray-matter anatomy. Here, we combined computational
approaches from behavioral genetics and big-data neuroimaging
to evaluate the interrelation between sleep, macroscale brain
structure, and mental and physical health. Indeed, in two large-
scale independent samples, we observed that sleep duration, as
well as global sleep quality, had a phenotypic relation with
intelligence and BMI, which was mirrored by additive genetic
effects. Depression showed only a phenotypic correlation with
sleep. Following, we demonstrated that sleep duration, but not
global sleep quality, had a (inconsistent) relation with local var-
iance in cortical thickness in two samples. Three out of four
phenotypic relations between sleep duration and local cortical
thickness were driven by additive genetic factors. At the same
time, both intelligence and BMI related to variance in cortical
thickness in these regions, suggesting that these factors might
have an overlapping neuroanatomical basis. Consistent with these
results, a comprehensive multivariate analysis revealed two robust
and heritable signatures, highlighting shared relationships
between macroscale anatomy and sleep, intelligence, BMI and
depression. Both components featured brain structures in both
unimodal and heteromodal association areas, and underlined the
embedding of nocturnal behavior in daytime functioning. Col-
lectively, our multi-sample approach provides evidence that sleep
is intrinsically interrelated with macroscale gray matter structure,
mental, and physical health.

Our observations highlight the key relation between intelli-
gence, mental and physical health and sleep profile in healthy
subjects. Previous work has implicated the important role of sleep
on life functioning, such as cognitive performance and quality of
life7,8, as well as higher rate of depressive symptoms13,14, hyper-
tension, diabetes, and obesity25,26. Indeed, clear associations of
sleep, cognitive performance and behavioral problems have been
observed in children53, adults54, and elderly44. It has been revealed
that short-term sleep deprivation has a deleterious effect on a
broad range of cognitive domains54 and short sleep duration is
associated with poor overall IQ /cognitive performance in healthy
children55.

There are various hypotheses on the biological processes
underlying the important role of sleep in the neuronal processing
of information and consequently mental processing. The trace
reactivation or replay hypothesis56,57 suggests that sleep helps
memory consolidation through reactivation of traces of neuronal
activity patterns, encoding information. The synaptic homeostasis
hypothesis proposes that sleep is necessary to counterbalance the
increase of synaptic connectivity5. Converging evidence suggests a
role of sleep in maintaining functional integrity of the fronto-
parietal networks, that support sustained attention58,59, as well as
default mode network60, which is a brain network, implicated in
task-unrelated thought. Indeed, in our multivariate analysis, we
observed a shared relation of intelligence and sleep with cortical
thickness in these networks. Importantly, we observed a positive

phenotypic relationship between amount of sleep and domain-
general cognitive skill in both the HCP sample, consisting of
young healthy adults, and in the eNKI sample, which included a
broad age-range with children, adults and elderly. Of note,
though the measurement of domain-general cognition was not
consistent across two samples, as we used NIH Toolbox Cogni-
tion in HCP and the WASI-II in eNKI, both tests have been
validated for different age-ranges47,48. Further studies are needed
to uncover the causal and longitudinal relationship between sleep
and cognitive skill across the life-span.

At the same time, our work highlights that inadequate sleep is
linked with increased BMI. Previously, it has been shown that
high BMI is associated with abnormal sleep duration and vice
versa61. Short term sleep restriction is associated with impaired
glucose metabolism, dysregulation of appetite, and increased
blood pressure, and prospective studies found increased risk of
weight gain associated with inadequate sleep62,63. In the same
vein, various studies have related BMI to brain structure and
function41, suggestive of a bidirectional relation between sleep,
BMI, and the brain.

Last, we observed a relation between sleep and depressive
symptoms. A recent meta-analysis implicated both long and short
sleep to be associated with increased risk of depression in
adults64. Though the mechanisms underlying this association are
not fully understood, daytime tiredness, resulting in increased
negative events and emotions, has been shown to be predictive of
poor outcome of depression. Next to this, sleep abnormalities
relate also to low physical activity, which in turn modulates risk
of depression. Importantly, sleep factors can predispose, pre-
cipitate, and perpetuate depression and in our multivariate model,
we observed both neutral and positive associations between
depression and unhealthy sleep behaviors, highlighting the
complex relation between sleep and mental health.

Though we could establish phenotypic and genetic correlations
between sleep duration and local cortical thickness in two inde-
pendent samples, findings were inconsistent. In the HCP sample,
but not in the eNKI sample, sleep duration was linked to thick-
ness in the frontal areas. The important role of frontal cortex in
sleep is previously well-documented. For example, sleep depri-
vation influences frontal executive functions in both healthy
individuals and patients with insomnia disorder65–67. In addition,
sleep deprivation leads to lower metabolism in the frontal cortex,
while sleep recovery moderately restores frontal lobe functions68.
Function abnormalities are also mirrored by abnormalities in
macro-anatomical structure, where cortical thinning in bilateral
precentral cortex and the superior/mid frontal cortex related
to insomnia symptoms69 and patients with insomnia disorder
showed gray matter abnormalities in the frontal cortices70,71. On
the other hand, phenotypic analyses in the eNKI sample
demonstrated that sleep duration had a positive link with thick-
ness in bilateral inferior temporal regions and right occipital
cortex. Also function and structure of temporal and occipital
areas has been associated with sleep patterns. For instance, older
adults with short or long sleep duration had higher rates of
cortical thinning in the frontal and temporal regions, as well as
the inferior occipital gyrus72 relative to older adults with normal
sleep duration. Also, insomnia disorder has been related to
functional abnormalities in the temporal and occipital areas,
beside the frontal regions73,74. These activations have been
associated with excessive hyperarousal, impaired alertness,
auditory-related and vision-related inattention, and experiencing
negative moods in such patients. Possible causes for divergence
could be sample characteristics, as well as confounding effects.
However, even when controlling for age, intelligence, BMI, and
depression, findings remained dissimilar between samples. Only
when evaluating spatial patterns of relationships between sleep
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duration and cortical thickness, we observed cross-sample con-
sistency, suggesting that the degree of impact of sleep duration on
local brain structure varied across samples, but that the direction
of the relation between sleep and cortical thickness was com-
parable across the cortex. Of note, though we observed diverging
phenotypic relationships across samples, three out of four local
relationships between sleep and cortical thickness were observed
driven by additive genetic factors, suggestive of a system-level
impact of sleep on brain structure, with modest but robust
underlying local genetic associations. Nevertheless, local, uni-
variate, associations between sleep and cortical thickness should
be interpreted with caution, as they were not consistent across
samples. It is of note that detrimental effects of both short and
long sleep have been reported previously46,75 and in the current
study, the large majority of individuals (>65% for all samples)
reported less than 7h of sleep whereas only a small proportion
(<9%) slept 9 h or more in both samples. Indeed, post-hoc ana-
lysis indicated associations between local brain structure and
sleep duration reflected patterns of short-to-normal sleep dura-
tion. Further studies in samples reporting long sleep duration are
needed to evaluate the differential effects of short and long sleep
duration on local brain structure.

Univariate relationships between sleep, brain structure, and
behavior in two independent samples were further corroborated
by our multivariate analysis. We could identify multivariate,
latent, relationships between cortical thickness on the one hand
and sleep, intelligence, BMI, and depression on the other one. In
the first factor, reflecting a positive-negative axis of behavior,
where sleep duration, together with intelligence, low BMI, and
high sleep quality, showed a negative relation to thickness in the
frontal and parietal areas, but a positive relation to the sensory-
motor and parahippocampal areas. These latent relationships
were robust across samples and driven by shared additive genetic
effects. Behaviorally, the observed latent factor mirrors the pre-
viously reported positive-negative axis of behavior previously
defined in a sub-sample of the HCP using functional connectivity.
Here, the axis related to increased functional connectivity of the
default mode network and negative associations in the sensor-
imotor networks76. We observed a second axis with a positive link
between low sleep quality, high intelligence, high depression, and
high BMI score and thickness of dorsolateral frontal cortex,
accompanied by negative relation to thickness in sensorimotor
areas. This axis related positively to intelligence and depression.

Our multivariate observations are broadly in line with our
univariate results. Indeed, the first brain factor again highlights a
negative relation between frontal thickness and sleep duration,
whereas temporal-occipital regions show a positive relation with
duration of sleep, reconciling divergent findings in the two inde-
pendent samples. However, our latent model also provided a
system-level perspective on the relation between sleep, behavior,
and brain structure. Here, unimodal and heteromodal association
cortices revealed an inverse relation to sleep and behavioral
variability. A previous body of literature have put forward a so-
called hierarchical model of brain function stretching from
unimodal to transmodal cortices, enabling both externally, as well
as internally oriented processing77,78. Indeed, it is likely that sleep,
intelligence, BMI, and depression do not only relate to internally
oriented processes, but also functional processes focused on the
external world supported by the somatosensory cortices. For
example, previous work has implicated sleep deprivation in sen-
sorimotor coupling, reporting that sleep deprived individuals
showed difficulties standing upright79. Likewise, memory con-
solidation processes during sleep have been linked to primary and
secondary sensorimotor cortices. For example, in mice, inhibition
of projecting axons from motor cortex to somatosensory cortex
impaired sleep-dependent reactivation of sensorimotor neurons

and memory consolidation80. Similarly, other studies applying
multivariate methods to understand the relation between system-
level brain function and complex behavior also have implicated
alterations of inter-network relationships between somatosensory
and heteromodal association cortices in mental function and
dysfunction81,82. It is possible that such disruptions are due to
dissociable neurodevelopmental as well as genetic effects affecting
the hierarchical interrelation of these brain systems77. Future
research on the neurobiology of sleep requires to be conducted
with functional and structural connectivity data enabling more
direct analysis of the relation between system-level connectivity,
sleep, and behavior.

In addition to providing evidence for a shared neurobiological
basis of sleep, mental and physical health, we observed that, in
line with previous literature17,18,46, variance in global sleep
quality and sleep duration was in part driven by additive genetic
effects. A recent GWAS study using 446,118 adults from UK
Biobank identified 78 loci, mainly PAX8 locus, for self-reported
habitual sleep duration46. Moreover, Dashti et al. observed,
similar to our observations, genetic overlap between sleep, mar-
kers of mental and physical health, as well as education attain-
ment. It is likely that the observed genetic correlation within our
sample between cortical thickness, intelligence, BMI, and sleep is
due to mediated pleiotropy (a gene affects A, which affects B).
Thus, it could be that a genetic mechanism affects gray matter
macrostructure and associated function and, as a consequence,
sleep duration. Alternatively, genetic variation might affect brain
function, which in turn modulates both macroscale structure and
sleep duration, or a genetic mechanism affects sleeping behaviors
through non-brain processes and in turn affects brain function
and structure. However, it is worthy to mention that our genetic
correlations analysis does not provide causal mechanisms on the
relation between brain structure, sleep, and behavior. Indeed,
there is genetic evidence for a bidirectional relationship between
sleep duration and schizophrenia46, as well as smoking beha-
vior83, highlighting the complex interplay between and behavior.
Next to this, though there is a negative genetic correlation
between short sleep duration and long sleep duration46, sugges-
tive of shared biological mechanisms, it is possible that both relate
to partly distinct underlying biological mechanisms. Further
studies will be needed to investigate whether shorter and longer
sleep duration differentially affect brain and behavior, and
investigate the relation between sleep, health, and brain in long-
itudinal datasets with imaging and deep phenotyping to further
disentangle causal relationships between sleep, brain structure,
and function.

Our integrative perspective on sleep, behavior, and brain struc-
ture may be relevant for future work targeting the relation between
sleep and neurodevelopment. For example, studies on development
have indicated a close relation between sleep, behavioral problems,
and school performance in children53. As childhood is an essential
time for neurodevelopment84,85 combining these two lines of
research might help to understand how healthy and abnormal sleep
patterns relate to neurodevelopment in youth. At the same time,
sleep disturbances have been related to neurodegenerative condi-
tions, and may drive early-onset pathogenesis. For example, sleep
disruption has been observed to upregulate neuronal activity, which
increases the production of amyloid-beta proteins resulting in
exacerbated tau pathology in various mouse models86 and sleep
disturbances in ageing might directly influence synaptic home-
ostasis and cognitive function. By providing system-level evidence
integrating cortical thickness with sleep and behavior, follow-up
research could further disseminate how brain anatomy relates to
sleep and general functioning during development and ageing and
identify functional and structural mechanisms that explain the
interrelation between sleep, development and ageing.
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Notably, we refrain from interpreting environmental correla-
tions, as the environmental component includes environmental
factors, but also measurement errors. In a previous work87, we
have shown that a model based on genetic and environmental
factors only was more parsimonious compared to a model
including common household effects in extended family samples
such as the HCP sample. Nevertheless, as individual variance in
sleep duration and quality was only in part explained by genetic
factors, future longitudinal models might help uncover relevant
familial and non-familial environmental effects relating sleep to
mental and physical health.

Taken together, our study on the interrelation between sleep,
mental, and physical health and brain structure was made pos-
sible by the open HCP and eNKI neuroimaging repositories.
These initiatives offer cognitive neuroimaging communities a
unique access to large datasets for the investigation of the brain
basis of individual difference. The use of multiple datasets has
enabled us to highlight variability across samples, and allowed us
to preform validation experiments to verify stability of our
observations. Given that reproducibility is increasingly important
nowadays, our study illustrates the advantages of open data to
increase our understanding of complex traits.

Methods
Participants and study design: human connectome project. We studied the
publicly available Human Connectome Project dataset (HCP; http://www.
humanconnectome.org/), which included data from 1206 individuals (656
females), 298 monozygotic twins (MZ), 188 dizygotic twins (DZ), and 720 single-
tons, with mean age 28.8 years (SD= 3.7, range= 22–37). Participants for whom
the images and data had been released (humanconnectome.org) after passing the
HCP quality control and assurance standards were included. The full set of
inclusion and exclusion criteria are described elsewhere88. All participants signed
an informed consent document at the beginning of day 1 of testing.

For our phenotypic analyses, we selected an unrelated subsample with complete
behavioral data (n= 457). After removing individuals with missing structural
imaging our sample for phenotypic correlations consisted of 424 (228 females)
individuals with mean age of 28.6 years (SD= 3.7, range= 22–36), see further
Table 4. For our twin-based genetic analyses, we used the complete sample of
individuals with complete structural imaging for structural gray matter and
behavioral data for sleep genetic correlation analyses including 1105 individuals
(599 females), 285 MZ twins, 170 DZ twins, and 650 singletons, with mean age
28.8 years (SD= 3.7, range= 22–37), see further Table 5. Environmental
correlations were also derived in this sample as a by-product of analysis of genetic
correlation analysis.

Structural imaging processing: human connectome project. MRI protocols of
the HCP are previously described89,90. In particular, the applied pipeline to obtain
the FreeSurfer-segm entation is described earlier89 and is recommended for the
HCP data. The pre-processing steps included co-registration of T1 and T2 images,
B1 (bias field) correction, and segmentation and surface reconstruction using
FreeSurfer version 5.3-HCP to estimate cortical thickness89.

Participants and study design: eNKI sample. To evaluate the cross-sample
reproducibility of observations, we additionally investigated correspondence
between sleep and cortical brain structure in the enhanced Nathan Kline Institute-
Rockland Sample (NKI). The sample was made available by the Nathan-Kline
Institute (NKY, NY, USA), as part of the ‘enhanced NKI-Rockland sample’

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472598/). All approvals
regarding human subjects’ studies were sought following NKI procedures. Images
were acquired from the International Neuroimaging Data Sharing Initiative (INDI)
online database https://fcon_1000.projects.nitrc.org/indi/enhanced/studies.html.

For our phenotypic analyses, we selected individuals with complete sleep and
imaging data. Our sample for phenotypic correlations consisted of 783 (487
females) individuals with mean age of 41.2 years (SD= 20.3, range= 12–85). See
Table 6 for demographic characteristics.

Structural imaging processing: NKI Rockland sample. 3D magnetization-
prepared rapid gradient-echo imaging (3D MP-RAGE) structural images91

were acquired using a 3.0 T Siemens Trio scanner with TR= 2500 ms, TE=
3.5 ms, Bandwidth= 190 Hz/Px, field of view= 256 × 256 mm, flip angle= 8°,
voxel size= 1.0 × 1.0 × 1.0 mm. More details on image acquisition are available
at https://fcon_1000.projects.nitrc.org/indi/enhanced/studies.html. All T1 ima-
ges were visually inspected to ensure the absence of gross artefacts and subse-
quently pre-processed using the FreeSurfer software library (http://surfer.nmr.
mgh.harvard.edu/) Version 5.3.092.

Parcellation-summaries of cortical thickness. We used a parcellation scheme50

based on the combination of a local gradient approach and a global similarity
approach using a gradient-weighted Markov Random models. The parcellation has
been comprehensively evaluated with regards to stability and convergence with
histological mapping and alternative parcellations. In the context of the current
study, we focused on the granularity of 200 parcels. In order to improve signal-to-
noise and improve analysis speed, we opted to average unsmoothed structural data
within each parcel and cortical thickness of each region of interest (ROI) was
estimated as the trimmed mean (10 percent trim).

Selection of behavioral markers based on HCP phenotypic traits. First, to
constrain analyses, we selected primary markers for cognition, mental and physical
health based on the relation of sleep to these traits in HCP. The selected traits
include 38 emotional, cognitive, NEO-FFI personality, as well as the 7 PSQI sleep
markers for reference, based on the unrestricted phenotypic data, as well as 46
mental and physical health markers based on the restricted phenotypic data. For
more information on available phenotypes, see: https://wiki.humanconnectome.
org/display/PublicData.

Behavioral markers: HCP. Inter-individual difference in sleep quality was derived
from information of the self-reported Pittsburg Sleep Questionnaire (PSQI)11,
which is a common measure of sleep quality with significant item-level reliability
and validity.

For markers of life function, we used BMI (703 × weight/(height)2) and the ASR
depression DSM-oriented scale for ages 18–5949 (https://aseba.org/). The ASR is a

Table 4 Behavioral characteristics of the HCP unrelated

sample.

Measure n Mean ± SD (range)

Males/females 196/228 –

Age 424 28.6 ± 3.7 (22–36)

Sleep duration (hours) 424 6.8 ± 1.2 (2.5–10)

Total sleep quality 424 4.9 ± 2.8 (0–15)

BMI 424 26.6 ± 5.3 (16.7–44.5)

Intelligence (total cognitive score) 418 121.5 ± 14.7 (84.6–153.4)

Depression (DSM-scale) 419 54.1 ± 6.1 (50–87)

Table 5 Behavioral characteristics of the complete HCP

sample including twins and siblings.

Measure n Mean ± SD (range)

Males/females 507/

606

–

Age 1113 28.8 ± 3.7 (22–37)

Sleep duration (hours) 1113 6.8 ± 1.1 (2.5–12)

Total sleep quality 1113 4.8 ± 2.8 (0–19)

BMI 1112 26.5 ± 5.2 (16.5–47.8)

Intelligence (total

cognitive score)

1096 121.8 ± 14.6 (84.6–153.4)

Depression (DSM scale) 1105 53.9 ± 5.7 (50–87)

Table 6 Behavioral characteristics of the eNKI sample.

Measure n Mean ± SD (range)

Males/females 296/487 –

Age 783 41.2 ± 20.3 (12–85)

Sleep duration (hours) 783 6.9 ± 1.3 (3–12)

Total sleep quality 783 4.6 ± 3.2 (0–17)

BMI 757 27.1 ± 5.9 (15.7–50.0)

Intelligence (WASI) 783 101.9 ± 13.3 (65–141)

Depression (BDI) 782 4.21 ± 6.3 (0–40)
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self-administered test examining diverse aspects of adaptive functioning and
problems. Scales are based on 2020 referred adults and normed on 1767 non-
referred adults. The test-retest reliability of the ASR was supported by 1-week test-
retest that were all above 0.71. The ASR also has good internal consistency (0.83),
and in the current study we focused on depression sub-score.

As a proxy for intelligence, we used the NIH Toolbox Cognition47, ‘total
composite score’. The Cognitive Function Composite score is derived by averaging
the normalized scores of each of the Fluid and Crystallized cognition measures,
then deriving scale scores based on this new distribution. Higher scores indicate
higher levels of cognitive functioning. Participant score is normed to those in the
entire NIH Toolbox Normative Sample (18 and older), regardless of age or any
other variable, where a score of 100 indicates performance that was at the national
average and a score of 115 or 85, indicates performance 1 SD above or below the
national average.

Behavioral markers: NKI. Sleep markers were derived from the Pittsburg Sleep
Questionnaire (see further the section on this question in the HCP sample).

Depression was measured using the Beck Depression Inventory (BDI–II). The
BDI-II is a 21-item self-report questionnaire assessing the current severity of
depression symptoms in adolescents and adults (ages 13 and up). It is not designed
to serve as an instrument of diagnosis, but rather to identify the presence and
severity of symptoms consistent with the criteria of the DSM-IV. Questions assess
the typical symptoms of depression such as mood, pessimism, sense of failure, self-
dissatisfaction, guilt, punishment, self-dislike, self-accusation, suicidal ideas, crying,
irritability, social withdrawal, insomnia, fatigue, appetite, and loss of libido.
Participants are asked to pick a statement on a 4-point scale that best describes the
way they have been feeling during the past two weeks93. Body-mass-index was
calculated using weight and height. These vitals are obtained and recorded by study
staff. Height was recorded in centimeters. Weight was recorded in kilograms. Body
Mass Index (BMI) was automatically calculated.

Intelligence was measured using the Wechsler Abbreviated Scale of Intelligence
(WASI-II). The WASI is a general intelligence, or IQ test designed to assess specific
and overall cognitive capabilities and is individually administered to children,
adolescents and adults (ages 6-89). It is a battery of four subtests: Vocabulary
(31-item), Block Design (13-item), Similarities (24-item) and Matrix Reasoning
(30-item). In addition to assessing general, or Full Scale, intelligence, the WASI is
also designed to provide estimates of Verbal and Performance intelligence
consistent with other Wechsler tests. Specifically, the four subtests comprise the full
scale and yield the Full-Scale IQ (FSIQ-4). The Vocabulary and Similarities subtests
are combined to form the Verbal Scale and yield a Verbal IQ (VIQ) score, and the
Block Design and Matrix Reasoning subtests form the Performance Scale and yield
a Performance IQ (PIQ) score48.

Statistics and reproducibility
Phenotypic analysis. For our phenotypic analysis in the HCP sample, we selected an
unrelated subsample to overcome possible bias due to genetic similarity of indi-
viduals. In eNKI the complete sample with available data was used. To assess
phenotypic relationships between sleep parameters and behavior/brain structure,
we used Spearman’s correlation test to account for outliers, while controlling for
age, sex, age × sex interaction, age2, age2 × sex interaction. In our structural whole-
brain analysis, we additionally controlled for global thickness. Findings were
similar when additionally controlling for depression, BMI or intelligence. We
controlled for multiple comparisons at FDR q < 0.05, per analysis step of univariate
behavior and univariate brain analysis, and report FDR q thresholds for reference.
We used the Robust Correlation Toolbox for Matlab to define confidence intervals
in our post-hoc phenotypic correlations94.

Heritability and genetic correlation analysis. To investigate the heritability and
genetic correlation of sleep parameters and brain structure, we analyzed sleep
parameters and 200 parcels of cortical thickness of each subject in a twin-based
heritability analysis. As previously described95, the quantitative genetic analyses
were conducted using Sequential Oligogenic Linkage Analysis Routines (SOLAR)96.
SOLAR uses maximum likelihood variance-decomposition methods to evaluate the
relative importance of familial and environmental influences on a phenotype by
modeling the covariance among family members as a function of genetic proximity.
Coefficient of relationship (genetic proximity) between individuals in the HCP
sample was computed using the KING method in the openly available genotyped
data of HCP. The method is described in detail before97 and evaluated in the context
of the current sample as described previously98. This approach can handle pedigrees
of arbitrary size and complexity and thus is optimally efficient with regard to
extracting maximal genetic information. To ensure that neuroimaging traits, parcels
of cortical thickness, conform to the assumptions of normality, an inverse normal
transformation was applied95.

Heritability (h2) represents the portion of the phenotypic variance (σ2p)

accounted for by the total additive genetic variance (σ2g), i.e., h
2 ¼ σ

2
g=σ

2
p .

Phenotypes exhibiting stronger covariances between genetically more similar
individuals than between genetically less similar individuals have higher
heritability. Within SOLAR, this is assessed by contrasting the observed covariance

matrices for a phenotypic (neuroimaging or behavioral) measure with the structure
of the covariance matrix predicted by kinship. Heritability analyses were conducted
with simultaneous estimation for the effects of potential covariates. For this
study, we included covariates of age, sex, age × sex interaction, age2, age2× sex
interaction. When investigating cortical thickness, we additionally controlled
for global thickness effects, as well as depression score, BMI, and intelligence in
post-hoc tests. Heritability estimates were corrected for multiple comparisons at
FDR q < 0.05, controlling for the number of parcels in case of analysis of brain
structure.

We performed genetic correlation analysis to determine if variations in sleep
and cortical thickness were influenced by the same genetic factors. Specifically,
bivariate polygenic analyses were conducted to estimate genetic (ρg) and
environmental (ρe) correlations, based on the phenotypic correlation (ρp), between
brain structure and sleep with the following formula:

ρp ¼ ρg
p h21h

2
2

� �

þ ρe
p½ð1� h21Þð1� h22Þ�, where h21 and h22 are the heritability’s

of the parcel-based cortical thickness and the sleep parameters. The significance of
these correlations was tested by comparing the log likelihood for two restricted
models (with either ρg or ρe constrained to be equal to 0) against the log likelihood
for the model in which these parameters were estimated. A significant genetic
correlation (using a FDR q < 0.05) is evidence suggesting that both phenotypes are
influenced by a gene or set of genes99.

Partial least squares. PLS is a multivariate data-driven statistical technique that
aims to maximize the covariance between two matrices by deriving latent com-
ponents (LCs), which are optimal linear combinations of the original
matrices100,101. We applied PLS to the cortical thickness and sleep, BMI, depres-
sion and IQ measures of all participants. In short, PLS performs data normal-
ization, cross-covariance, and singular value decomposition. Following, brain and
behavioral scores are created and permutation testing is performed to assess sig-
nificance of each latent factor solution. Last, bootstrapping is performed to test the
stability of the brain saliencies.

Each LC has a distinct cortical thickness pattern (called brain saliences) and a
distinct behavioral profile (called behavioral saliences). By linearly projecting the
cortical thickness and behavioral measures of each participant onto their
corresponding saliences, we obtain individual-specific brain and behavioral
composite scores for each LC. PLS seeks to find saliences that maximize across-
participant covariance between the brain and behavioral composite scores. The
number of significant LCs was determined by a permutation (1000 permutations).
The p-values (from the permutation test) for the LCs were corrected for multiple
comparisons using a false discovery rate (FDR) of p < 0.05. For the brain saliencies,
though all regions contributed to the latent brain score, we highlighted regions with
a bootstrap ratio > 2, approximately p < 0.05. Findings where summarized at the
level of macroscale function networks102, by averaging the BSR score per network,
as well as summarizing the relative contribution of each functional network to
positive (BSR > 2), as well as negative (BSR <−2) relations. Here we controlled for
the size of the network.

Functional decoding. All significant parcels were functionally characterized, using
the Behavioral Domain meta-data from the BrainMap database using forward
inference (www.brainmap.org)103,104. To do so, volumetric counterparts of the
surface-based parcels were identified. In particular, we identified those meta-data
labels (describing the computed contrast [behavioral domain]) that were sig-
nificantly more likely than chance to result in activation of a given parcel105–107.
That is, functions were attributed to the identified effects by quantitatively deter-
mining which types of experiments are associated with activation in the respective
parcellation region. Significance was established using a binomial test (p < 0.05,
corrected for multiple comparisons using false discovery rate (FDR)) (Supple-
mentary Fig. 6).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data, analyzed in this manuscript, were obtained from the open-access HCP young

adult sample (http://www.humanconnectome.org/)90 and enhanced NKI-Rockland

sample (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472598/)51. Brain images were

acquired from the International Neuroimaging Data Sharing Initiative (INDI) online

database http://fcon_1000.projects.nitrc.org/indi/enhanced/studies.html. The raw data

may not be shared by third parties due to ethics requirements, but can be downloaded

directly via the above weblinks. Spearman correlations and confidence intervals were

computed using the Robust Correlation toolbox https://github.com/CPernet/

robustcorrtool94.

Genetic analyses were performed using solar eclipse 8.4.0 (http://www.solar-eclipse-

genetics.org), and data on the KING pedigree analysis is available here: https://www.

nitrc.org/projects/se_linux/96,98. We performed partial least square analysis using https://

miplab.epfl.ch/index.php/software/PLS.100,101. BrainMap analysis were performed using

http://www.brainmap.org103,104.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0892-6

10 COMMUNICATIONS BIOLOGY |           (2020) 3:171 | https://doi.org/10.1038/s42003-020-0892-6 | www.nature.com/commsbio



Code availability
Main analysis scripts and genetic correlation tables are available at https://github.com/

sofievalk/projects/tree/master/Tahmasian_Sleep.
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