Home > Publications database > Phase coherent transport and spin-orbit interaction in GaAs/InSb core/shell nanowires > print |
001 | 874659 | ||
005 | 20220930130233.0 | ||
024 | 7 | _ | |a 10.1088/1361-6641/ab839 |2 doi |
024 | 7 | _ | |a 10.1088/1361-6641/ab8396 |2 doi |
024 | 7 | _ | |a 2128/25138 |2 Handle |
037 | _ | _ | |a FZJ-2020-01575 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Zellekens, Patrick |0 P:(DE-Juel1)145960 |b 0 |
245 | _ | _ | |a Phase coherent transport and spin-orbit interaction in GaAs/InSb core/shell nanowires |
260 | _ | _ | |a Bristol |c 2020 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1593155220_13095 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Low-temperature magnetotransport measurements are performed on GaAs/InSb core-shell nanowires. The nanowires were self-catalyzed grown by molecular beam epitaxy. The conductance measurements as a function of back-gate voltage show an ambipolar behavior comprising an insulating range in between the transition from the p-type to the n-type region. Simulations based on a self-consistent Schrödinger--Poisson solver revealed that the ambipolar characteristics originate from a Fermi level dependent occupation of hole and electron states within the approximately circular quantum well formed in the InSb shell. By applying a perpendicular magnetic field with respect to the nanowire axis, conductance fluctuations were observed, which are used to extract the phase-coherence length. By averaging the magneto-conductance traces at different back-gate voltages, weak antilocalization features are resolved. Regular flux-periodic conductance oscillations are measured when an axial magnetic field is applied. These oscillations are attributed to closed-loop quantized states located in the InSb shell which shift their energetic position periodically with the magnetic flux. Possible reasons for experimentally observed variations in the oscillation patterns are discussed using simulation results. |
536 | _ | _ | |a 522 - Controlling Spin-Based Phenomena (POF3-522) |0 G:(DE-HGF)POF3-522 |c POF3-522 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Demarina, Nataliya |0 P:(DE-Juel1)125576 |b 1 |
700 | 1 | _ | |a Janssen, Johanna |0 P:(DE-Juel1)166417 |b 2 |
700 | 1 | _ | |a Rieger, Torsten |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Lepsa, Mihail Ion |0 P:(DE-Juel1)128603 |b 4 |
700 | 1 | _ | |a Perla, Pujitha |0 P:(DE-Juel1)169951 |b 5 |
700 | 1 | _ | |a Panaitov, G. |0 P:(DE-Juel1)128715 |b 6 |
700 | 1 | _ | |a Lüth, Hans |0 P:(DE-Juel1)128608 |b 7 |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 8 |
700 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1088/1361-6641/ab8396 |0 PERI:(DE-600)1361285-2 |n 8 |p 13 |t Semiconductor science and technology |v 35 |y 2020 |x 0268-1242 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/874659/files/Zellekens_2020_Semicond._Sci._Technol._35_085003.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/874659/files/Zellekens_2020_Semicond._Sci._Technol._35_085003.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:874659 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145960 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)125576 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)166417 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128603 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)169951 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128715 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128608 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128634 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-522 |2 G:(DE-HGF)POF3-500 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SEMICOND SCI TECH : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-3-20200312 |k IBI-3 |l Bioelektronik |x 3 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|