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Stochastic properties of the frequency dynamics in real and synthetic power grids
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The frequency constitutes a key state variable of electrical power grids. However, as the frequency is subject
to several sources of fluctuations, ranging from renewable volatility to demand fluctuations and dispatch, it is
strongly dynamic. Yet, the statistical and stochastic properties of the frequency fluctuation dynamics are far
from fully understood. Here we analyze properties of power-grid frequency trajectories recorded from different
synchronous regions. We highlight the non-Gaussian and still approximately Markovian nature of the frequency
statistics. Furthermore, we find that the frequency displays significant fluctuations exactly at the time intervals of
regulation and trading, confirming the need of having a regulatory and market design that respects the technical
and dynamical constraints in future highly renewable power grids. Finally, employing a recently proposed
synthetic model for the frequency dynamics, we combine our statistical and stochastic analysis and analyze
in how far dynamically modeled frequency properties match the ones of real trajectories.
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I. INTRODUCTION

A stable electric power supply is essential for the function-
ing of our society [1]. The ongoing energy transition towards
renewable generation fundamentally changes the conditions
for the operation of the power system [2]. A better understand-
ing of the dynamics, control, and variability of this highly
complex system is needed to ensure stability in a rapidly
changing environment [3,4].

The power-grid frequency is the central observable for the
control of AC electric power grids, as it directly reflects the
balance of the grid: A surplus of feed-in power increases
the frequency and a shortage reduces the frequency [5]. Ob-
serving the frequency of the power grid can thus provide deep
insights into the dynamical stability of the grid as well as the
operation of the control system and the economic dispatch of
generators. In today’s system strict operational boundaries are
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imposed on the frequency and the rate of change of frequency
[6]. For example, in the Central European power grid (CE),
the stable operational boundary for frequency variations is set
at ±200 Hz . Moreover, if the frequency deviates more than
� f = ±20 Hz, the existing control systems, i.e., primary and
secondary control, are activated to compensate the imbalance
in the power grid and to return the frequency to the nominal
one [7].

These control mechanisms and operational boundaries are
especially interesting when designing new grids involving
concepts such as smart grids [8], prosumers [9], or microgrids

[10], and their interaction with the grid frequency. Further-
more, due to the increased usage of renewable energies, syn-
chronous machines are replaced by power electronics, such as
inverters, posing additional challenges on ensuring frequency
stability [11]. Inverter-based generators do not have any innate
inertia, leading to the frequency of the power grid becoming
more volatile, unless additional stabilizers are included in the
system [12].

A more sophisticated analysis of the power-grid frequency
dynamics is paramount, as all power generators and con-
sumers have to ensure the stability of the grid in the presence
of many effects simultaneously impinging on it. In such anal-
yses it is both relevant to study existing power grids [13] as
well as to evaluate any forecasts and models of the frequency
dynamics expected in future grids [14].

Despite the strict operational boundaries for frequency
variations, numerous different sources of disturbances
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introduce measurable variations of the frequency over time.
Important sources introducing fluctuations to the grid fre-
quency include consumers, renewable energies, and the dis-
patch of power plants via the energy market. Recent research
shows that today’s demand fluctuations contribute substan-
tially to uncertainties in the power balance [15–17]. Moreover,
intermittent renewable energies influence the frequency first
due to their stochastic and often non-Gaussian power feed-in
[18,19], and second due to the decreasing the inertia in the
power grid, as mentioned above. Hence, to operate energy
systems with a high share of renewable energies, a solid
understanding of the impact of fluctuating feed-in on the
grid’s frequency is necessary. Previous studies described the
stochastic behavior of the grid frequency using stochastic op-
timization [20], a simulated robustness analysis [21], Fokker-
Planck approaches [22,23], or tracing the impact of wind feed-
in on the grid frequency [24,25], and the integration of storage
systems to improve the frequency quality in the presence
of wind power [26]. However, the mathematical properties
of the underlying stochastic process have not been studied
comprehensively.

In addition to the aforementioned stochastic disturbances,
trading affects the grid frequency by scheduled deterministic
periodic events, e.g., dispatch actions on the energy market
cause brief jumps of the frequency [13,23,27]. While deter-
ministic disturbances have been observed for various grids
[13,28], no comprehensive model exists to describe the market
interaction with the grid frequency quantitatively. We thus aim
for a dynamical model of the power-grid frequency including
the role of trading and regulator action in the power grid. Such
a model may help especially to plan future grids with a high
share of renewable energies. Volatile renewable energies, such
as wind and solar power, are unpredictable and thus cannot be
used to balance the grid frequency following trading actions.
Instead, it is fundamental to understand the interplay between
the stochastic dynamics of unpredictable fluctuations and the
deterministic characteristics of the energy market.

Here we first review essential statistical properties and
the temporal evolution of the frequency of real-world power
grids. With a special focus on the deterministic fluctuations at
trading and dispatch times. Our approach provides a method
to obtain bountiful information on the power-grid frequency
that can be obtained from simple measurements. Next we
introduce our stochastic model to regenerate the frequency
dynamics and explain how we estimate its parameters solely
from the power-grid trajectory. Finally, we demonstrate how
our model reproduces key aspects of the stochastic and deter-
ministic behavior of real trajectories.

II. POWER-GRID FREQUENCY OVERVIEW

The power-grid frequency displays several characteristic
features, such as non-Gaussian distributions, an exponential
decay of the autocorrelation, and regular impacts by trading
[23]. We extend earlier studies by uncovering other stochastic
properties of power-grid frequency, namely addressing the
questions of Markovianity, linearity, and stationarity of the
data. Specifically, we investigate the recorded frequency from
Great Britain (GB) [29], and from two different regions in
central Europe (CE). The two data samples of CE have

FIG. 1. The power-grid frequency fluctuates over time, with dif-
ferences between distinct regions. Displayed are 3 h of frequency
trajectories on March 1st for Paris, Baden-Württemberg (both CE),
and GB. The data sets belong to 2015, 2016, and 2017, respec-
tively, for Paris, GB, and Baden-Württemberg. Note that the Baden-
Württemberg and Paris data are from different years, while still
displaying similar statistics.

been recorded in Paris (France) [30] and Baden-Württemberg
(southwest of Germany) [31]. The time resolution of data sets
are 1, 10, and 1 s, respectively for GB, Paris, and Baden-
Württemberg. We analyze data spanning over one year: 2015
for France, 2016 for GB, and 2017 for Baden-Württemberg.
The final section addresses the modeling following the data
from Baden-Württemberg. A direct observation of the fre-
quency of the three samples (Great Britain, Paris, Baden-
Württemberg) during three arbitrarily chosen hours in March
reveals substantial differences in the fluctuation patterns, see
Fig. 1. The range of variations in GB is larger than in the
other two frequency data sets. The reason being, the primary
control in GB is only activated for frequency deviations of at
least ±200 Hz, while the other frequency sets belong to the
CE grid, where control is activated at ±20 Hz . Consequently
the CE data set has smaller overall fluctuations and a lower
standard deviation.

In contrast to many random processes, the values of the
power-grid frequencies do not strictly follow Gaussian (nor-
mal) distributions [32,33]. Instead, the distributions display
heavy tails, where large deviations occur much more fre-
quently than anticipated from a normal distribution. In Fig. 2
the frequency and increment frequency distributions of GB
and Baden-Württemberg are shown. As both Paris and Baden-
Württemberg belong to the CE power grid, they have similar
(but not identical) statistical properties. Therefore, for the
rest of this section, we focus our analysis on the frequency
measurements from Baden-Württemberg as an example, and
where we aim to refer to general statistic features, we refer
to the CE grid. Comparing the frequency probability distribu-
tion function (PDF) with the best-fitting normal distribution,
highlights the non-Gaussian properties of the frequency PDF
of CE, which has a kurtosis 4.23, Fig. 2(c). The kurtotsis,
the normalized fourth moment, measures the heavy-tailedness
of a distribution, see, e.g., [34]. Any value of the kurtosis
larger than the that of a normal distribution (κnormal = 3)
indicates heavy tails [35]. The frequency distribution for GB
breaks the symmetry expected from a normal distribution and
exhibits a skewness of 0.191, see Fig. 2(a). The skewness,
the normalized third moment β, measures how skewed, i.e.,
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FIG. 2. Both the PDFs of the frequency and of the frequency increments display non-Gaussian features. We compare the PDF of the
frequency with the most-likely Gaussian fit (blue curve) and q-Gaussian (red curve), for (a) the GB grid and (c) the CE grid evaluating the
Baden-Württemberg time series. We observe an asymmetry (nonzero skewness β) in the GB data with the deformation parameter q = 0.95
and pronounced heavy tails (high kurtosis κ) in the CE data with q = 1.1. Increment statistics in (b) GB and (d) CE grid were carried out for
different time lags. Short-time lag (τ = 100 s ) displays more pronounced deviations from Gaussianity (dashed lines) than larger time lags.

asymmetric, a distribution is. For a normal distribution, the
skewness is zero. Furthermore, based on the shape of the
PDFs, large deviations of the power-grid frequency towards
very low frequencies occur more often in the GB grid, while
deviations towards higher frequencies are more common in
the CE grid. We note that both skewness and kurtosis statistics
depend on the sample size, but the observed non-Gaussian
features are genuine since we do use large data sets with
high sample frequency. Instead of normal distributions, the
observed statistics is possibly better described by Lévy-stable
or q-Gaussian distributions [23].

The frequency increment statistics also display non-
Gaussian features. We estimate the probability to observe
large fluctuations on short timescales by computing frequency
increments, i.e., � fτ = f (t + τ ) − f (t ), see Figs. 2(b) and
2(d), for τ = 100 s and τ = 1000 s, respectively. Next, we
compare the observed increment probabilities with the best
Gaussian fit: Frequency variations of the order of 210 mHz
within 100 mHz occur in the GB frequency data set 105 times
more often than expected for Gaussian processes. For the
Baden-Württemberg data, frequency variations ∼60 mHz oc-
cur 100 times more often compared to a Gaussian distribution.
The increment frequency statistics indicates that the frequency
on the short timescale is particularly subject to large fluctua-
tions. Potentially new control systems or market mechanisms
are necessary to compensate the power imbalance in the
power grid on short timescales. In contrast, the shape of the
frequency and frequency increment PDF become similar for
larger time lags, such as τ = 1000, and the deviation from
Gaussianity is not as extreme as for the short timescale, see
Figs. 2(b) and 2(d).

To obtain more information from the frequency trajectory,
we investigate the autocorrelation and its decay for the fre-
quency data sets. The autocorrelation measures the correla-
tion of a signal with itself at a later time. High correlation
values indicate that a large signal is typically followed by
still a large signal and vice versa. The power-grid frequency
autocorrelation decays approximately exponentially as a func-
tion of the time lag �t for short-time lags, see [23] and
Fig. 3. Several prototypical stochastic processes, such as the
Ornstein-Uhlenbeck process, display a similar decay, follow-
ing precisely an exponential function [36]

c(�t ) = 〈 f (t ) f (t + τ )〉, (1)

cOU(�t ) = exp(−α�t ), (2)

with a damping constant α. While initially the system is highly
correlated with its own history, this damping will cause a
decorrelation. Naturally, distinct power grids will have their
specific characteristic damping constant. A least squares fit
of an exponential decay (2) to the data yields α−1 which
is ∼385 s for the GB grid and ∼312 s for the CE grid
respectively, see Fig. 3(a).

Another feature of the autocorrelation are the regular peaks
every 15 min, which are highlighted with black arrows in
Fig. 3. These peaks are caused by a mismatch of power
supply and demand [13,27,32]. In most electricity grids the
operation of dispatchable power plants is scheduled in 1 h
blocks, where additional (shorter) 30 and 15 min intervals
might exist. Hence the generation curve is steplike, while the
demand varies continuously. From step to step, the power
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FIG. 3. Regular peaks in the autocorrelation demonstrate a mis-
match between power supply and demand. (a) The autocorrelation
c(�t ) of GB and CE for a 1 h lag period. The black arrows indicate
the times of trading/dispatch actions after 15 and 30 min, which
cause the peaks in the autocorrelation. The dotted red line reports
the exponential decay of the autocorrelation in the first 10 min.
The inverse damping constants α−1 are estimated to be ∼385 and
∼312 s for the GB and CE power grids, respectively. (b) The
autocorrelation function c(�t ) of the GB (black) and CE (blue)
data sets for a 24 h lag period. Regardless of regions, the initial
exponential decay is followed by regular autocorrelation peaks. The
black arrows highlight peaks of the autocorrelation after 1 h and and
also after 24 h, related to the periodicity of the frequency trajectory.

balance rapidly switches from positive to negative or vice
versa, leading to large deviations of the grid frequency, which
become visible in the autocorrelation function, see also [14].
In addition, daily routine, scheduled events, etc., contribute
to an increased correlation every hour and 24 h, see black
arrows in Fig. 3(b). Again, based on the specific regulations
of different synchronous regions and their transmission sys-
tem operators, the nature of the autocorrelation differs from
region to region. For instance, the height of peaks in the
GB autocorrelation in Fig. 3(a) is visibly smaller than CE,
which we attribute to a smaller trading and regulatory volume
and overall larger stochastic fluctuation in GB. Consequently,
the deterministic aspect of the frequency dynamics is diluted
in GB.

Finally, to clearly demonstrate the impact of the energy
trading market and related regulator actions on the frequency,
we show the daily average frequency of both GB and CE
in Fig. 4. The daily average frequency for every second is
obtained by averaging over all days of the year. The impact
of the trading and regulation becomes clear, as we observe
sharp frequency jumps upwards or downwards every hour in
both GB and CE. The direction of the jump and thereby the

FIG. 4. Regular market activities induce periodic frequency
jumps. Displayed is the frequency trajectory for (a) the GB grid and
(b) CE grid, averaged over all 366 days in 2016. We notice clear
frequency jumps every hour, consistent with the previous observation
of peaks in the autocorrelation function.

question whether the grid is displaying a shortage or a surplus
of power is not random but also follows a deterministic pat-
tern. The market design is different for various synchronous
grids or different countries within the same grid. For exam-
ple, both the CE and the GB data display a periodicity of
frequency jumps but the frequency dynamics within the CE
grid appears more predictable. Frequency drops occur in the
CE grid in each hour between 20:00 and 00:00, while the
frequency clearly increases between 06:00 to 08:00 and 16:00
to 18:00. This pattern is linked to the slope of the demand
curve. The steplike generation curve anticipates an increase
or decrease of the demand [13]. In case of rising demand,
such as during the morning, an increasing amount of power
is dispatched for each trading interval, see Fig. 5(b). Every
15 min the generation is increased to anticipate the demand
by the consumers. These discrete changes in the supplied
power form the basis for the power mismatch in the synthetic
frequency model discussed below.

III. STOCHASTIC PROPERTIES

Before we introduce a stochastic model for the power
frequency dynamics, we perform some complementary tests
to further characterize the underlying stochastic dynamics. Is
the observed stochastic process stationary or nonstationary?
Do we observe time symmetry, i.e., is the underlying process
linear or nonlinear? Does the process depend on its past or
only on the current state, i.e., is the process Markovian?

Stationary process. To test the reproducibility of the mea-
sured frequency, we first investigate the stationarity for the
data. In the general definition, a probabilistic process is sta-
tionary if the probability of measured variables, in our case
the probability of the frequency, does not depend on the time
[38]. One of the standard methods to test the stationarity
of a data set is analyzing its spectrum. The sharp peaks in
Fig. 6 emphasise the existence of the periodicity on different
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FIG. 5. Discrete power dispatch leads to jumps of the scheduled power supply. (a) We display the real dispatch trajectory of the electricity
supply in Germany in one day in 2017 [37]. (b) The scheduled power jumps every 15 min, as highlighted by the zoom on the two hours
highlighted in red in (a). Overall, the scheduled power supply approximates the changing demand throughout the day. Its discrete nature leads
to jumps of the supply that has to be compensated by control mechanisms.

timescales in the considered data. According to the spectrum,
there are visible periods every 1/4, 1/2, 1, 12, and 24 h in
the grid frequency. This shows the nonstationary of the data
on these timescales. However beyond 24 h, i.e., on longer
timescales, the spectrum is decreasing and consequently the
data becomes stationary.

There are other natural cycles influencing a power-grid
system, such as the weekend–weekday pattern, as well as
seasonal and yearly cycles. However, these cycles do not

FIG. 6. Market activities and long timescales introduce nonsta-
tionarity. We plot the power spectrum of (a) GB and of (b) the CE
data. The spectra exhibit well-determined peaks before they decay
on a large timescale. The dotted vertical lines show 1/4, 1/2, 1, 12,
and 24 h cycles (from right to left).

seem to leave a significant imprint in the spectrum of the
power-grid frequency. Our stochastic model will focus on the
intermediate timescale and hence include the characteristic
daily dispatch and demand pattern, while neglecting longer-
term processes.

Linear process. Next, we investigate if there is any nonlin-
earity in the recorded power-grid frequency. For this purpose,
consider the three-point autocorrelation of the frequency data
as a measure of the time asymmetry in the data. If a time series
is asymmetric in time, it is also nonlinear [38]. The following
relations have been suggested to calculate the three-point
autocorrelation for a data set [38]:

LT 1 = 〈 f (t )2 f (t + τ )〉 − 〈 f (t ) f (t + τ )2〉, (3)

LT 2 = 〈[ f (t ) − f (t + τ )]3〉/〈[ f (t ) − f (t + τ )]2〉, (4)

where LT stands for linear test. A linear, and therefore time-
symmetric, trajectory has both LT 1 and LT 2 sufficiently close
to zero. Checking the validity of our results for a realistic
process, we compare the original data to a surrogate time
series, that provides a reference point of LT 1 and LT 2 for
a linear process. To generate the surrogate time series, we first
take the Fourier transform (FT) of the original data and then
randomize the phases. Finally, we employ an inverse FT to
obtain the surrogate data. With the described procedure we
suppress any nonlinearity in the process, and therefore the
surrogate data includes only the linear characteristics of the
considered data [39]. The original data is linear if the LT

result of the original data lies within the value range of the
LT results of the ensemble of surrogate data. Here, instead of
displaying the full ensemble of surrogate data in Fig. 7, we
have shown just an example for a surrogate data to avoid to
obscure the figure. Comparing the LT 1 results of the surrogate
data sets with the LT 1 of the original data sets displays that
the qualitative behavior of both are equivalent, entailing that
the processes approximately follow linear characteristics, for
both the GB and the CE data sets, as seen in Fig. 7(a). Looking
more closely at the LT 1 for the CE surrogate data, which only
includes the linear characteristics and fluctuations, we note
that its deviation from zero are larger than LT 1 for the original
CE data. Investigating the value of LT 2 for GB also confirms
the linear characteristic of the data set. As the LT 1 and LT 2
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FIG. 7. The frequency trajectories display small nonlinear effects. (a) The LT 1 results for the GB and CE frequency measurements. The
dashed lines show the LT 1 results for the surrogate data sets. The surrogate results act as a reference case of a linear model. Comparing
the results of the original data with surrogate ones, we conclude both GB and CE are approximately linear. (b) LT 2 results for the CE data.
Surrogate (dashed black) and original data (solid blue) do differ more than when using LT 1. This difference and the periodicity in LT 2 are the
signature of small nonlinear effects.

results for GB are the same, we only show the LT 1 results.
However, for the CE data set, LT 2 indicates that the data
might not be strictly linear but displays small nonlinearities,
as seen in Fig. 7(b). As shown in Fig. 3, the effect of the
market activity in CE is more regular and more severe than
in GB, therefore we suspect that the nonlinearity in CE data is
caused by the regular jumps in the frequency trajectory. When
devising our model, we will therefore approximate the weakly
nonlinear process as linear.

Chapman-Kolmogorov test. A fundamental property of
stochastic processes is whether future states only depend on
the current state or whether they have memory. In other words,
whether the process is Markovian or not. A well-known
approach to evaluate whether a process is Markovian is the
Chapman-Kolmogorov test [36]. According to the Chapman-
Kolmogorov test, the conditional PDFs of Markovian pro-
cesses obey the following equation:

p( f3, t3| f1, t1) =

∫
p( f3, t3| f2, t2)p( f2, t2| f1, t1)df2, (5)

where t3 > t2 > t1. To test the Markovianity for the data,
instead of employing directly Eq. (5), one considers its 2D
and 3D conditional PDF. As shown in Fig. 8, p( f3, t3| f1, t1)
and p( f3, t3| f2, t2; f1, t1) match approximately, implying the

power-grid frequency is mostly Markovian. Any stochastic
model for the power frequency should therefore be Markovian
as well.

IV. STOCHASTIC MODEL

We now introduce a synthetic model for the power-grid
frequency as a stochastic, mostly linear, and Markovian pro-
cess. The stochastic model presented here aims at reproducing
essential features of a power grid, as well as its statistical
characteristics, and consists of three independent systems:
First, the intrinsic deterministic dynamics of the power grid,
including primary and secondary control. Second, it embodies
as well a stochastic signal or noise, as evidenced by the
aforementioned frequency trajectories [27]. Third, we model
the sudden power imbalance arising after the dispatch actions
by implementing an appropriate deterministic function: We
make use of historic dispatch data and apply it using a a step
function of the power. Other functions, such as artificial steps
or sawtoothlike functions are also possible.

Instead of the actual frequency, we use the bulk angular
velocity relative to the reference frequency of 50 Hz, ω =

2π ( f − 50 Hz) to express our model. Contrary to network
analysis on power grids [40,41], we have only access to
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FIG. 8. The Markovian nature of the real data is confirmed by a Chapman-Kolmogorov test for (a) the GB grid and (b) the CE grid using
the Baden-Württemberg data set. The proximity of the contour lines of p( f3, t3| f1, t1, f2, t2) (red contour) and p( f3, t3| f1, t1) (colored contour)
show the validity of Chapman-Kolmogorov test for the frequency data sets. The time t1 is chosen to contain ten data points to show the contours
clearly. Next, the times t2 and t3 are multiples of t1, chosen as 2t1 and 3t1, respectively.
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FIG. 9. All terms of the synthetic model (6) are necessary to reproduce the frequency trajectory. We plot the angular velocity ω as a function
of time when using the synthetic frequency model (6) but setting individual parameters to 0. Parameters are chosen for pure illustrative purpose
and we set ω(0) = 0.1 as an initial condition. (a) Including only primary control leads to a pure exponential decay of the angular velocity.
(b) Adding nonzero noise ǫ, we recover an Ornstein-Uhlenbeck process. (c) Including a step function for the power imbalance �P leads to a
continuously drifting Ornstein-Uhlenbeck process. (d) Finally, including secondary control guarantees that the angular velocity returns back
to the reference. Parameters are ǫ = 0.001/s2, c1 = 0.005/s, c2 = 0.00003/s2, �P = 0.004/s2 at every hour and half or a quarter of it every
30 or 15 and 45 min, respectively.

frequency measurements on the global scale and therefore
average over all nodes to obtain the averaged (bulk) fre-
quency and angular velocity [42] ω = 1

M

∑N
i=1 Miωi, where

M =
∑N

i=1 Mi is the total inertia of all nodes and N is the
number of nodes in the power grid. Typically, the frequency
at each node is very close to the bulk frequency throughout
the grid, with fluctuations indicating the gross power balance.
Notable exceptions are high-frequency disturbances, which
are typically localized [43,44], or interarea oscillations, where
energy is oscillating from one part of the grid to another one.
The synthetic model of the frequency dynamics is discussed
in detail in [14]. It is given as a linear stochastic differential
equation:

dω

dt
= −c1ω − c2θ + �Pext + ǫξ, (6)

with bulk angle θ and its derivative dθ/dt = ω. Furthermore,
�Pext is the exogenous influence on the power balance, i.e.,
the trading or dispatch impact of the power imbalance, ǫ and
ξ are the noise amplitude and Gaussian white noise function,
respectively. Finally, c1 is the magnitude of the fast-acting
primary control, while c2 is the magnitude of the secondary
control which acts slower and lasts longer than primary con-
trol. We illustrate the contribution of the different terms of the
synthetic model (6) in Fig. 9.

The full model is displayed in Fig. 9(d): In case of an
abundance of generation, i.e., a sudden positive �Pext, the

frequency increases above the reference (50 Hz ). The primary
control c1 mitigates the sudden rise of the frequency and
quickly stabilizes the frequency, but not at the nominal value
of 50 Hz . Subsequently, the secondary control slowly restores
the frequency back to its reference of 50 Hz . According to the
time schedule of control systems, we assume that the primary
control acts faster than secondary control, and consequently
c1 ≫ c2 [45,46].

Furthermore, the nature of the dispatch structure �Pext

must be specified. The generation of each power plant (the
dispatch) is rapidly adapted by the operators, e.g., based on
trading at the European Energy Exchange. As discussed in
detail at the end of Sec. II, the operation of dispatchable power
plants is scheduled at fixed intervals. As we have shown in
Fig. 5 the power generation can increase or decrease every
15 min, which we model approximately as a step function,
with potentially different step sizes at the 1 h, 30 min, or
15 min intervals. On the other hand, data of power generation
in different regions or countries are generally available, and
can be implemented directly in the model. In the model
presented here, we extracted the power generation in Germany
for the equivalent month of December 2017, and used this as
the power balance �Pext [37].

Before we compare results of the synthetic model with the
real data, we need to determine suitable parameters. Details
are given in [14] on how to estimate the parameters from
a given frequency trajectory. In short, the noise amplitude
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TABLE I. The parameters for the synthetic model for CE, De-
cember 2017.

ǫ (s−2) c1 (s−1) c2 (s−2)

0.00107 0.00915 0.00003

ǫ is estimated based on the stochastic fluctuations around
the observed frequency trajectory, while the power imbalance
�Pext is directly read from the rise or sag of the frequency at
the scheduled time points of dispatch, which are proportional
to the missing or exceeding amount of power. (Notice that in
our case we include the real power generation from Germany
for December 2017, thus circumvent extracting the power
generation �Pext from the data.) Primary control c1 is recov-
ered by studying the process’ affinity to revert its trajectory
to the dispatched power and secondary control c2 is estimated
from the frequency recovery rate to the nominal value after a
scheduled action [14].

V. QUANTITATIVE COMPARISON BETWEEN

MODEL AND DATA

To evaluate the stochastic model described above, we
generated one month of synthetic data with a 1-s resolution,
mirroring the CE data from December 2017. The parameters
for the synthetic model [14] are estimated from the 1-s reso-
lution data series provided by [31] and their values are shown
in Table I. The data for the power generation for the month of
December 2017, in Germany, can be found in [37].

Now we repeat most of our statistical and stochastic anal-
yses to compare how well the synthetic model reproduces
the original data. First, we note that the general shape of
the PDF [see Fig. 10(a)] and autocorrelation [see Fig. 10(b)]
do agree well between the model (yellow) and the empirical
data (black). Both the model and the data display heavy tails,
i.e., the aforementioned deviation from Gaussianity. Further-
more, the autocorrelation function of the synthetic model
captures the regular peaks, due to the changing dispatch.
The decay of the autocorrelation function is approximately
described by the current model. Both results emphasise the
enormous impact of the energy market activity and dispatch
structure on the dynamics and stability of the power system.
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FIG. 11. Chapman-Kolmogorov test confirms the Markovian na-
ture of the synthetic model. The test used 1 month of synthetic CE
data generated by (6).

Consistent with our modeling assumptions, we find that
the synthetic model is Markovian, based on a Chapman-
Kolmogorov test, see Fig. 11. Similarly, we do observe that
both LT 1 and LT 2 results show that the synthetic model
has compatible characteristics with the real one, i.e., while
the LT 1 reports a linear process, LT 2 results show a small
nonlinearity in the synthetic, cf. Fig. 12. As we discussed in
Sec. III, this nonlinear behavior is likely linked to the regular
trading in the CE power grid.

We again emphasise that our model addresses the dy-
namics on the intermediate timescale of the frequency, i.e.,
approximately 30 s to a few hours. On shorter timescales, our
model neglects: (i) dynamical behavior of rotating machines,
(ii) nontrivial stochastic noise, (iii) network dynamics, and
(iv) momentary reserve vs primary control. Moreover, the
switching in trading is not instantaneous as we have assumed
in the model. Similarly, our model does not include all effects
acting on larger timescales, for example, (i) feed-in of wind
and solar power, which determines how much inertia exists
in the system and how much the generation side fluctuates,
and (ii) dispatch of power plants determined on the spot
market, such as the European Energy Exchange (EEX). This
is especially relevant for areas where no historic market data
are available or forecasts are attempted. In order to capture
these effects, we would need a full fledged market model plus
meteorological input for the weather data.

FIG. 10. The synthetic model captures important features of the real data, including trading peaks and heavy tails. (a) The probability
distributions of the frequency data from CE in 2017 (black), compared to our synthetic model (yellow). Both display distinct heavy tails with
kurtosis κ > 3. (b) The autocorrelation function of the frequency initially decays and then displays regular peaks at the trading intervals.
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FIG. 12. The synthetic model is approximately linear. We apply
the linear tests on the time series generated by the synthetic model:
LT 1 shows linear characteristics for the CE data set, however LT 2
reports a small nonlinearity also found in the real data of the CE
power-grid frequency.

The spectral analysis and the increment statistics of the
synthetic data are shown in Fig. 13. Similarly to Fig. 2, in
Fig. 13(a) the frequency increment statistics of the generated
data also display non-Gaussian features on short timescales
as the real data. The spectrum of the synthetic frequency tra-
jectory displays several pronounced peaks, which are mostly

FIG. 13. Increment and spectral analysis of the synthetic model
are consistent with the real data. (a) The increment statistics of the
synthetic data shows non-Gaussian characteristics similar to the real
one. (b) The spectrum of the synthetic frequency trajectory reports
large peaks at the trading times, while it decays to zero for longer
timescales. The dotted vertical lines show respectively, 1/4, 1/2, 1,
12, and 24 h from right to left.

consistent with the trading times of the model, i.e., 1/4, 12,
and 24 h (cf. Fig. 13).

VI. DISCUSSION

In summary, we have presented an analysis of the statis-
tics of power-grid frequency dynamics, with an emphasis on
nonstandard behavior. In particular, we have shown the non-
Gaussian nature of the power-grid frequency fluctuations in
the aggregated and increments statistics, which includes heavy
tails. Furthermore, we have demonstrated that the power-grid
frequency trajectory is adequately described as a Markovian
process and that it shows small nonlinear effects. Regulatory
and trading events introduce some distinct periodicities in
both autocorrelation and spectrum of the data sets. As we
have mentioned before, the trading also has an obvious effect
on the tails of frequency PDFs, or in other words, it is the
source of non-Gaussinaity in the measured data [27]. Finally,
based on the observed properties, we have constructed a
synthetic model that captures not only the aggregated statistics
in terms of the histogram but also qualitatively reproduces
the observed autocorrelation decay, correlation peaks due to
market activity, increment statistics, and spectral properties
of the real data [14]. The model is well suited to under-
stand the energy-market effects on power-grid frequency on
intermediate timescales and goes beyond previous studies
focusing on a description [13,27] of trading or a stochastic
theory [23]. We here focused on a statistical and stochastic
analysis of real-world frequency dynamics, with a comparison
to the presented model. The analysis of the synthetic model is
consistent with our modeling assumptions, in that it is approx-
imately Markovian and displays small nonlinear and periodic
market effects. We should emphasise here that the observed
heavy tails of the frequency distributions arise mainly due to
trading actions, impacting not only the frequency temporally
close to the market action but also several minutes later. This
is clear since we only applied Gaussian noise to an otherwise
linear dynamics. Only the deterministic trading actions can
therefore cause the non-Gaussian properties. The spectral and
increment properties of the synthetic model also approximate
the original real-world data, which confirms again the ef-
fect of the trading market on the frequency dynamics. It is
worth to reiterate that the presented model is conceptually
simple, easy to implement, and includes a minimum set of
adjustable parameters. Therefore, we explicitly did not model
the machine dynamics, noise on very short timescales or a
detailed market and dispatch model. Some alternative model
approaches, involving more fitting parameters are explored
in [14].

Concluding our analysis of power-grid frequency dynam-
ics and the stochastic model we presented, including a struc-
tured comparison, may help to better understand the interplay
of the internal dynamics and external disturbances of electric-
power systems and to develop improved simulation models.
A thorough understanding of this interplay is a prerequisite
for the design and optimization of future electricity markets,
as well as regulatory and control schemes. For instance,
the current market design in the continental European grid
regularly causes substantial frequency deviations when the
dispatch is adjusted every 15 min such that primary control
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has to be activated on a regular basis. A smoother change
of the dispatch could reduce these frequency deviations and
reduce stress onto the primary and secondary control system
[13]. Alternatively, frequency regulations could be adapted
in a way that the typical frequency deviations due to the
changing dispatch are tolerated while exceptional cases are
identified and handled by the control system. Our structured
analyses (Markov, stationary, and linearity properties) and
model may offer a powerful and versatile framework to
study these questions, in particular because the model, while
still simple, simultaneously captures essential features of the
interplay of internal dynamics, control, and market activity.
The presented analysis and modeling framework can thus
contribute to the design of future power system, reducing the
necessity for control actions and saving costs.

The model can further be used to assess the frequency sta-
bility of future power-grid structures, including in particular
microgrids [8] or low-inertia grids [12]. Traditional dynamical
stability analyses focus on local and global stability of fixed
points and the impact of large isolated disturbances such as
the sudden shutdown of the power plant. In comparison, the
impact of ongoing stochastic disturbances on grid stability
has received less attention. As evidenced in this study, the
regulatory system and market design may have played an
important role for these external stochastic effects.

We kept the model as simple as possible to reproduce key
features of the frequency time series such as the histogram and
the autocorrelation. Future research could naturally extend the
model to better match the spectrum or long-time autocorrela-
tion. Furthermore, one could investigate particular intervals of
the power grid trajectory, e.g., high- vs low-demand intervals,
such as weekdays vs weekends. Additional stochastic investi-
gations could further quantify the agreement between real data
and the synthetic model, e.g., by investigating higher-order N-
point statistics, going beyond our current two-point statistics
(increments).
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