001     874666
005     20210130004739.0
024 7 _ |a 10.1109/LED.2020.2971034
|2 doi
024 7 _ |a 0741-3106
|2 ISSN
024 7 _ |a 1558-0563
|2 ISSN
024 7 _ |a 2128/25175
|2 Handle
024 7 _ |a WOS:000522206300002
|2 WOS
037 _ _ |a FZJ-2020-01582
082 _ _ |a 620
100 1 _ |a Liu, Mingshan
|0 P:(DE-Juel1)173033
|b 0
|e Corresponding author
245 _ _ |a Vertical Ge Gate-All-Around Nanowire pMOSFETs With a Diameter Down to 20 nm
260 _ _ |a New York, NY
|c 2020
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593438228_5997
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work, we demonstrate vertical Ge gate-all-around (GAA) nanowire pMOSFETs fabricated with a CMOS compatible top-down approach. Vertical Ge nanowires with diameters down to 20 nm and an aspect ratio of ~11 were achieved by optimized Cl 2 -based dry etching and self-limiting digital etching. Employing a GAA architecture, post-oxidation passivation and NiGe contacts, high performance Ge nanowire pMOSFETs exhibit low SS of 66 mV/dec, small DIBL of 35 mV/V and a high $\text {I}_{ \mathrm{\scriptscriptstyle ON}}/\text{I}_{ \mathrm{\scriptscriptstyle OFF}}$ ratio of ${2.1}\times {10}^{{6}}$ . The electrical behavior was also studied with temperature-dependent measurements. The deviation between the experimental SS and the ideal kT/q $\cdot $ ln10 values stems from the density of interface traps $(\text {D}_{\text {it}})$ . Our measurements suggest that lowering the top contact resistance is a key to further performance improvement of vertical Ge GAA nanowire transistors.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Scholz, Stefan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hardtdegen, Alexander
|0 P:(DE-Juel1)165704
|b 2
700 1 _ |a Bae, Jin Hee
|0 P:(DE-Juel1)177006
|b 3
700 1 _ |a Hartmann, Jean-Michel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Knoch, Joachim
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Grutzmacher, Detlev
|0 P:(DE-Juel1)125588
|b 6
|u fzj
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 7
|u fzj
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 8
773 _ _ |a 10.1109/LED.2020.2971034
|g Vol. 41, no. 4, p. 533 - 536
|0 PERI:(DE-600)2034325-5
|n 4
|p 533 - 536
|t IEEE electron device letters
|v 41
|y 2020
|x 1558-0563
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/874666/files/FINAL%20VERSION-Mingshan.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/874666/files/08978941.pdf
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/874666/files/FINAL%20VERSION-Mingshan.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/874666/files/08978941.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874666
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173033
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165704
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177006
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE ELECTR DEVICE L : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)VDB881
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)VDB881
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21