000874669 001__ 874669
000874669 005__ 20220930130234.0
000874669 0247_ $$2doi$$a10.1088/1367-2630/ab82
000874669 0247_ $$2doi$$a10.1088/1367-2630/ab825f
000874669 0247_ $$2Handle$$a2128/27310
000874669 0247_ $$2WOS$$aWOS:000545698900001
000874669 037__ $$aFZJ-2020-01585
000874669 082__ $$a530
000874669 1001_ $$0P:(DE-Juel1)174294$$aHaags, Anja$$b0$$ufzj
000874669 245__ $$aGrowth and Evolution of TCNQ and K Coadsorption Phases on Ag(111)
000874669 260__ $$a[London]$$bIOP$$c2020
000874669 3367_ $$2DRIVER$$aarticle
000874669 3367_ $$2DataCite$$aOutput Types/Journal article
000874669 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615206180_7308
000874669 3367_ $$2BibTeX$$aARTICLE
000874669 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874669 3367_ $$00$$2EndNote$$aJournal Article
000874669 520__ $$aAlkali-doping is a very efficient way of tuning the electronic properties of active molecular layers in (opto-)electronic devices based on organic semiconductors. In this context, we report on the phase formation and evolution of charge transfer salts formed by 7,7,8,8-tetracyanoquinodimethane (TCNQ) in coadsorption with potassium on a Ag(111) surface. Based on an in-situ study using low energy electron microscopy and diffraction we identify the structural properties of four phases with different stoichiometries, and follow their growth and inter-phase transitions. We label these four phases α to δ, with increasing K content, the last two of which (γ and δ-phases) have not been previously reported. During TCNQ deposition on a K-precovered Ag(111) surface we find a superior stability of δ phase islands compared to the γ phase; continued TCNQ deposition leads to direct transition from the δ to the β-phase when the K:TCNQ ratio corresponding to this phase regime is reached, with no intermediate γ-phase formation. When, instead, K is deposited on a surface precovered with large islands of the low density commensurate (LDC) TCNQ phase that are surrounded by a TCNQ 2D-gas, we observe two different scenarios: On the one hand, in the 2D-gas phase regions, very small α-phase islands are formed (close to the resolution limit of the microscope, 10-15 nm), which transform to β-phase islands of similar size with increasing K deposition. On the other hand, the large (micrometer-sized) TCNQ islands transform directly to similarly large single-domain β-phase islands, the formation of the intermediate α-phase being suppressed. This frustration of the LDC-to-α transition can be lifted by performing the experiment at elevated temperature. In this sense, the morphology of the pure TCNQ submonolayer is conserved during phase transitions.
000874669 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000874669 588__ $$aDataset connected to CrossRef
000874669 7001_ $$0P:(DE-HGF)0$$aRochford, Luke A.$$b1
000874669 7001_ $$0P:(DE-Juel1)165989$$aFelter, Janina$$b2
000874669 7001_ $$0P:(DE-HGF)0$$aBlowey, Phil J.$$b3
000874669 7001_ $$00000-0002-0827-2022$$aDuncan, David Andrew$$b4
000874669 7001_ $$0P:(DE-HGF)0$$aWoodruff, D Phil$$b5
000874669 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b6$$eCorresponding author
000874669 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/ab825f$$p063028$$tNew journal of physics$$v22$$x1367-2630$$y2020
000874669 8564_ $$uhttps://juser.fz-juelich.de/record/874669/files/Invoice_8145516.pdf
000874669 8564_ $$uhttps://juser.fz-juelich.de/record/874669/files/Haags_2020_New_J._Phys._22_063028.pdf$$yOpenAccess
000874669 8564_ $$uhttps://juser.fz-juelich.de/record/874669/files/Invoice_8145516.pdf?subformat=pdfa$$xpdfa
000874669 8767_ $$88145516$$92020-03-26$$d2020-03-31$$eAPC$$jZahlung erfolgt$$pab825f$$zerste Rng 8145292 mit tax storniert, Belegnr. 1200151737
000874669 909CO $$ooai:juser.fz-juelich.de:874669$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000874669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174294$$aForschungszentrum Jülich$$b0$$kFZJ
000874669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b6$$kFZJ
000874669 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000874669 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000874669 9141_ $$y2020
000874669 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874669 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874669 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874669 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2017
000874669 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874669 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874669 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874669 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874669 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874669 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874669 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874669 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874669 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874669 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874669 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874669 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874669 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000874669 980__ $$ajournal
000874669 980__ $$aVDB
000874669 980__ $$aUNRESTRICTED
000874669 980__ $$aI:(DE-Juel1)PGI-3-20110106
000874669 980__ $$aAPC
000874669 9801_ $$aAPC
000874669 9801_ $$aFullTexts