000874671 001__ 874671
000874671 005__ 20210130004739.0
000874671 037__ $$aFZJ-2020-01587
000874671 1001_ $$0P:(DE-Juel1)168542$$aBrito, Mariano$$b0$$eCorresponding author
000874671 1112_ $$aSOMATAI Conference 2016, Soft Matter at Aqueous Interfaces$$cCrete$$d2016-05-30 - 2016-06-03$$wGreece
000874671 245__ $$aUltrafiltration of charged-stabilized suspensions and protein solutions: Theory and applications
000874671 260__ $$c2016
000874671 3367_ $$033$$2EndNote$$aConference Paper
000874671 3367_ $$2BibTeX$$aINPROCEEDINGS
000874671 3367_ $$2DRIVER$$aconferenceObject
000874671 3367_ $$2ORCID$$aCONFERENCE_POSTER
000874671 3367_ $$2DataCite$$aOutput Types/Conference Poster
000874671 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1586251546_13716$$xOther
000874671 520__ $$aWe present a comprehensive study of cross-flow membrane ultrafiltration (UF) [1] of charge-stabilized aqueous suspensions [2] and globular protein solutions [3]. Charge-stabilized dispersions suspensions exhibit interesting static and dynamic behavior, reflected in properties such as the osmotic pressure, generalized sedimentation coefficient and viscosity. These properties are determined by electro-steric and electro-hydrodynamic interactions. We calculate the wavenumber-dependent diffusion function, sedimentation coefficient and viscosity at different salinities, in good agreement with experimental and simulation data. The predicted dispersion properties form an important ingredient to the modeling of the convective-diffusive transport in a filtration process. The efficiency of the separation process depends on hydrodynamic boundary conditions, membrane properties and possible fouling effects, and the particle interactions. We calculate the particle concentration polarization layer, permeate flux, and thresholds for the onset of membrane cake formation, for different operating conditions. Our theoretical results are compared with UF experiments on charged-silica particle suspensions [2] and protein solutions [3].References[1] R. Roa, E.K. Zholkovskiy and G. Nägele, Soft Matter 11, 4016 (2015)[2] R. Roa, D. Menne, P. Buzatu, J. Riest, J.K.G. Dhont, E.K. Zholkovsky, M. Wessling and G. Nägele, submitted (2016)[3] M. Brito, J. Riest and G. Nägele, work in progress
000874671 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000874671 7001_ $$0P:(DE-Juel1)156528$$aRiest, Jonas$$b1
000874671 7001_ $$0P:(DE-Juel1)157698$$aRoa, Rafael$$b2
000874671 7001_ $$0P:(DE-Juel1)130858$$aNaegele, Gerhard$$b3
000874671 909CO $$ooai:juser.fz-juelich.de:874671$$pVDB
000874671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168542$$aForschungszentrum Jülich$$b0$$kFZJ
000874671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich$$b3$$kFZJ
000874671 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000874671 920__ $$lyes
000874671 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000874671 980__ $$aposter
000874671 980__ $$aVDB
000874671 980__ $$aI:(DE-Juel1)IBI-4-20200312
000874671 980__ $$aUNRESTRICTED