001     874671
005     20210130004739.0
037 _ _ |a FZJ-2020-01587
100 1 _ |a Brito, Mariano
|0 P:(DE-Juel1)168542
|b 0
|e Corresponding author
111 2 _ |a SOMATAI Conference 2016, Soft Matter at Aqueous Interfaces
|c Crete
|d 2016-05-30 - 2016-06-03
|w Greece
245 _ _ |a Ultrafiltration of charged-stabilized suspensions and protein solutions: Theory and applications
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1586251546_13716
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a We present a comprehensive study of cross-flow membrane ultrafiltration (UF) [1] of charge-stabilized aqueous suspensions [2] and globular protein solutions [3]. Charge-stabilized dispersions suspensions exhibit interesting static and dynamic behavior, reflected in properties such as the osmotic pressure, generalized sedimentation coefficient and viscosity. These properties are determined by electro-steric and electro-hydrodynamic interactions. We calculate the wavenumber-dependent diffusion function, sedimentation coefficient and viscosity at different salinities, in good agreement with experimental and simulation data. The predicted dispersion properties form an important ingredient to the modeling of the convective-diffusive transport in a filtration process. The efficiency of the separation process depends on hydrodynamic boundary conditions, membrane properties and possible fouling effects, and the particle interactions. We calculate the particle concentration polarization layer, permeate flux, and thresholds for the onset of membrane cake formation, for different operating conditions. Our theoretical results are compared with UF experiments on charged-silica particle suspensions [2] and protein solutions [3].References[1] R. Roa, E.K. Zholkovskiy and G. Nägele, Soft Matter 11, 4016 (2015)[2] R. Roa, D. Menne, P. Buzatu, J. Riest, J.K.G. Dhont, E.K. Zholkovsky, M. Wessling and G. Nägele, submitted (2016)[3] M. Brito, J. Riest and G. Nägele, work in progress
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
700 1 _ |a Riest, Jonas
|0 P:(DE-Juel1)156528
|b 1
700 1 _ |a Roa, Rafael
|0 P:(DE-Juel1)157698
|b 2
700 1 _ |a Naegele, Gerhard
|0 P:(DE-Juel1)130858
|b 3
909 C O |o oai:juser.fz-juelich.de:874671
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130858
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21